Submitted:
22 January 2026
Posted:
26 January 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Results
2.1. Analysis of the Full-Spectrum Extract and the THC-Free Extract
2.2. Effect of the THC-Free Extract, the Full-Spectrum Extract, and THC on MAGL Activity
2.3. Effect of the THC-Free Extract, the Full-Spectrum Extract, and THC on DAGL Activity
2.4. Effect of the THC-Free Extract, the Full-Spectrum Extract, and THC on LPAase Activity

2.5. Effect of the THC-Free Extract, the Full-Spectrum Extract, and THC on LPA-PLA1 Activity
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of the Cannabis Extract
4.3. Preparation of the THC-Free Cannabis Extract
4.4. Identification and Quantification of Phytocannabinoids
4.5. Preparation of Synaptosomes
4.6. Preparation of Radiolabeled Substrates
4.7. DAGL Activity Assay
4.8. LPAase Activity Assay
4.9. MAGL Activity Assay
4.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 2-AG | 2-arachidonoylglycerol |
| AEA | anandamide |
| BSA | bovine serum albumin |
| CBR | cannabinoid receptors |
| CB1 | cannabinoid receptor 1 |
| CB2 | cannabinoid receptor 2 |
| CC | cerebral cortex |
| DAG | diacylglycerol |
| DAGL | diacylglycerol lipase |
| DTT | dithiotreitol |
| ECS | endocannabinoid system |
| LPA | lysophosphatidic acid |
| LPAase | lysophosphatidate phosphohydrolase |
| LPA-PLA1 | lysophosphatidate phospholipase A1 |
| LPC | lysophosphatidilcholine |
| MAG | monoacylglycerol |
| MAGL | monoacylglycerol lipase |
| ABHD6 | serine hydrolase alpha-beta-hydrolase domain 6 |
| NEM | N-ethylmaleimide |
| SYN | synaptosomes |
| THC | ∆9-tetrahydrocannabinol |
References
- Devane, W. A.; Hanuš, L.; Breuer, A.; Pertwee, R. G.; Stevenson, L. A. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992, 258, 1946–1949. [Google Scholar] [CrossRef]
- Sugiura, T.; Kishimoto, S.; Oka, S.; Gokoh, M. Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog. Lipid Res. 2006, 45, 405–446. [Google Scholar] [CrossRef]
- Howlett, A. C. The cannabinoid receptors. Prostaglandins Other Lipid Mediat. 2002, 68-69, 619–631. [Google Scholar] [CrossRef]
- Maurelli, S.; Bisogno, T.; De Petrocellis, L.; Di Luccia, A.; Marino, G.; et al. Two novel classes of neuroactive fatty acid amides are substrates for mouse neuroblastoma “anandamide amidohydrolase”. FEBS Lett. 1995, 377, 82–86. [Google Scholar] [CrossRef]
- Okamoto, Y.; Wang, J.; Morishita, J.; Ueda, N. Biosynthetic pathways of the endocannabinoid anandamide. Chem. Biodivers. 2007, 4, 1842–1857. [Google Scholar] [CrossRef] [PubMed]
- Gulyas, A. I.; Cravatt, B. F.; Bracey, M. H.; Dinh, T. P.; Piomelli, D.; et al. Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur. J. Neurosci. 2004, 20, 441–458. [Google Scholar] [CrossRef] [PubMed]
- Prescott, S. M.; Majerus, P. W. Characterization of 1,2-diacylglycerol hydrolysis in human platelets. Demonstration of an arachidonoyl-monoacylglycerol intermediate. J. Biol. Chem. 1983, 258, 764–769. [Google Scholar] [CrossRef]
- Dinh, T. P.; Kathuria, S.; Piomelli, D. RNA interference suggests a primary role for monoacylglycerol lipase in the degradation of the endocannabinoid 2-arachidonoylglycerol. Mol. Pharmacol. 2004, 66, 1260–1264. [Google Scholar] [CrossRef] [PubMed]
- Nakane, S.; Oka, S.; Arai, S.; Waku, K.; Ishimab, Y.; et al. 2-Arachidonoyl-sn-glycero-3-phosphate, an arachidonic acid-containing lysophosphatidic acid: occurrence and rapid enzymatic conversion to 2-arachidonoyl-sn-glycerol, a cannabinoid receptor ligand, in rat brain. Arch. Biochem. Biophys. 2002, 402, 51–58. [Google Scholar] [CrossRef]
- Bahr, B. A.; Karanian, D. A.; Makanji, S. S.; Makriyannis, A. Targeting the endocannabinoid system in treating brain disorders. Expert Opin. Investig. Drugs 2006, 15, 351–365. [Google Scholar] [CrossRef]
- Freund, T. F.; Katona, I.; Piomelli, D. Role of endogenous cannabinoids in synaptic signaling. Physiol. Rev. 2003, 83, 1017–1066. [Google Scholar] [CrossRef]
- Mulder, J.; Zilberter, M.; Pasquaré, S. J.; Alpár, A.; Schulte, G.; et al. Molecular reorganization of endocannabinoid signalling in Alzheimer’s disease. Brain 2011, 134, 1041–1060. [Google Scholar] [CrossRef]
- Pascual, A. C.; Gaveglio, V. L.; Giusto, N. M.; Pasquaré, S. J. Aging modifies the enzymatic activities involved in 2-arachidonoylglycerol metabolism. BioFactors 2013, 39, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Pascual, A. C.; Gaveglio, V. L.; Giusto, N. M; Pasquaré, S. J. Cannabinoid receptor-dependent metabolism of 2-arachidonoylglycerol during aging. Exp. Gerontol. 2014, 55, 134–142. [Google Scholar] [CrossRef]
- de Meijer, E. The Chemical Phenotypes (Chemotypes) of Cannabis. In Handbook of Cannabis, online ed.; Pertwee, R., Ed.; Oxford University Press: Oxford, UK, 2015; pp. 89–110. [Google Scholar]
- Aizpurua-Olaizola, O.; Soydaner, U.; Öztürk, E.; Schibano, D.; Simsiret, Y.; et al. Evolution of the Cannabinoid and Terpene Content during the Growth of Cannabis sativa Plants from Different Chemotypes. J. Nat. Prod. 2016, 79, 324–331. [Google Scholar] [CrossRef]
- Hanuš, L. O.; Meyer, S. M.; Muñoz, E.; Taglialatela-Scafati, O.; Appendino, G.; et al. Phytocannabinoids: a unified critical inventory. Nat. Prod. Rep. 2016, 33, 1357–1392. [Google Scholar] [CrossRef]
- Russo, E. B. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef] [PubMed]
- Blasco-Benito, S.; Seijo-Vila, M.; Caro-Villalobos, M.; Tundidor, I.; Andradas, C.; et al. Appraising the “entourage effect”: Antitumor action of a pure cannabinoid versus a botanical drug preparation in preclinical models of breast cancer. Biochem. Pharmacol. 2018, 157, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Nallathambi, R.; Mazuz, M.; Namdar, D.; Shik, M.; Namintze, D.; et al. Identification of Synergistic Interaction Between Cannabis-Derived Compounds for Cytotoxic Activity in Colorectal Cancer Cell Lines and Colon Polyps That Induces Apoptosis-Related Cell Death and Distinct Gene Expression. Cannabis Cannabinoid Res. 2018, 3, 120–135. [Google Scholar] [CrossRef]
- Stasiłowicz-Krzemién, A.; Nogalska, W.; Maszewska, Z.; Maleszka, M.; Dobrón, M.; et al. The Use of Compounds Derived from Cannabis sativa in the Treatment of Epilepsy, Painful Conditions, and Neuropsychiatric and Neurodegenerative Disorders. Int. J. Mol. Sci. 2024, 25, 5749. [Google Scholar] [CrossRef]
- Nidadavolu, P.; Bilkei-Gorzo, A.; Krämer, M.; Schürmann, B.; Palmisano, M.; et al. Efficacy of Δ9 -Tetrahydrocannabinol (THC) Alone or in Combination With a 1:1 Ratio of Cannabidiol (CBD) in Reversing the Spatial Learning Deficits in Old Mice. Front. Aging Neurosci. 2021, 13, 718850. [Google Scholar] [CrossRef]
- Casiraghi, A.; Roda, G.; Casagni, E.; Cristina, C.; Musazzi, U. M.; et al. Extraction Method and Analysis of Cannabinoids in Cannabis Olive Oil Preparations. Planta Med. 2018, 84, 242–249. [Google Scholar] [CrossRef]
- Romano, L. L.; Hazekamp, A. Cannabis Oil: chemical evaluation of an upcoming cannabis-based medicine. Cannabinoids 2013, 7, 1–11. [Google Scholar]
- Raharjo, T. J.; Verpoorte, R. Methods for the analysis of cannabinoids in biological materials: a review. Phytochem. Anal. 2004, 15, 79–94. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 8th ed.; Wiley-Blackwell: Ames, IA, USA, 1989. [Google Scholar]
- Cotman, C. W. Isolation of synaptosomal and synaptic plasma membrane fractions. Methods Enzymol. 1974, 31, 445–452. [Google Scholar]
- Pasquaré de García, S. J.; Giusto, N. M. Phosphatidate phosphatase activity in isolated rod outer segment from bovine retina. Biochim. Biophys. Acta 1986, 875, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Gaveglio, V. L.; Pasquaré, S. J.; Giusto, N. M. Metabolic pathways for the degradation of phosphatidic acid in isolated nuclei from cerebellar cells. Arch. Biochem. Biophys. 2011, 507, 271–80. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, T. A.; Farooqui, A. A.; Horrocks, L. A. Bovine brain diacylglycerol lipase: substrate specificity and activation by cyclic AMP-dependent protein kinase. Lipids 2007, 42, 187–195. [Google Scholar] [CrossRef]
- Fleming, I. N.; Yeaman, S. J. Subcellular distribution of N-ethylmaleimide-sensitive and -insensitive phosphatidic acid phosphohydrolase in rat brain. Biochim. Biophys. Acta 1995, 1254, 161–168. [Google Scholar] [CrossRef]
- Chang, J. W.; Niphakis, M. J.; Lum, K. M.; Cognetta, A. B.; Wanget, C.; et al. Highly selective inhibitors of monoacylglycerol lipase bearing a reactive group that is bioisosteric with endocannabinoid substrates. Chem. Biol. 2012, 19, 579–588. [Google Scholar] [CrossRef]
- Baker, R. R.; Chang, H. A metabolic path for the degradation of lysophosphatidic acid, an inhibitor of lysophosphatidylcholine lysophospholipase, in neuronal nuclei of cerebral cortex. Biochim. Biophys. Acta 2000, 1483, 58–68. [Google Scholar] [CrossRef]
- Blankman, J. L.; Simon, G. M.; Cravatt, B. F. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol. 2007, 14, 1347–1356. [Google Scholar] [CrossRef] [PubMed]
- Pascual, A. C.; Gaveglio, V. L.; Giusto, N. M.; Pasquaré, S. J. 2-Arachidonoylglycerol metabolism is differently modulated by oligomeric and fibrillar conformations of amyloid beta in synaptic terminals. Neuroscience 2017, 362, 168–180. [Google Scholar] [CrossRef]
- Giusto, N. M.; Bazán, N. G. Phospholipids and acylglycerols biosynthesis and 14CO2 production from [14C] glycerol in the bovine retina: the effects of incubation time, oxygen and glucose. Exp. Eye Res. 1979, 29, 155–168. [Google Scholar] [CrossRef]
- Lowry, O. H.; Rosebrough, N.; Farr Lewwis, A.; Randall, R. J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Salat, D. H. The declining infrastructure of the aging brain. Brain Connect. 2011, 1, 279–293. [Google Scholar] [CrossRef]
- Stranahan, A. M.; Mattson, M. P. Recruiting adaptive cellular stress responses for successful brain ageing. Nat. Rev. Neurosci. 2012, 13, 209–216. [Google Scholar] [CrossRef]
- Grimm, A.; Eckert, A. Brain aging and neurodegeneration: from a mitochondrial point of view. J. Neurochem. 2017, 143, 418–431. [Google Scholar] [CrossRef] [PubMed]
- Poddar, M. K.; Dewey, W. L. Effects of cannabinoids on catecholamine uptake and release in hypothalamic and striatal synaptosomes. J. Pharmacol. Exp. Ther. 1980, 214, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Bloom, A. S. Effect of ∆9-tetrahydrocannabinol on the synthesis of dopamine and norepinephrine in mouse brain synaptosomes. J. Pharmacol. Exp. Ther. 1982, 221, 97–103. [Google Scholar] [CrossRef]
- Harris, R. A.; Stokes, J. A. Cannabinoids inhibit calcium uptake by brain synaptosomes. J. Neurosci. 1982, 2, 443–447. [Google Scholar] [CrossRef]
- Little, P. J.; Martin, B. R. The effects of ∆9-tetrahydrocannabinol and other cannabinoids on cAMP accumulation in synaptosomes. Life Sciences 1991, 48, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- De Petrocellis, L.; Ligresti, A.; Moriello, A. S.; Allarà, M.; Bisogno, T.; et al. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br. J. Pharmacol. 2011, 163, 1479–1494. [Google Scholar] [CrossRef]
- Machado, K da C.; Islam, M. T.; Ali, E. S.; Rouf, R.; Shaikh, J. U.; et al. A systematic review on the neuroprotective perspectives of beta-caryophyllene. Phytother. Res. 2018, 32, 2376–2388. [Google Scholar] [CrossRef]
- Klawitter, J.; Weissenborn, W.; Gvon, I.; Walz, M.; Klawitteret, J.; et al. β-Caryophyllene Inhibits Monoacylglycerol Lipase Activity and Increases 2-Arachidonoyl Glycerol Levels In Vivo: A New Mechanism of Endocannabinoid-Mediated Analgesia. Mol. Pharmacol. 2024, 105, 75–83. [Google Scholar] [CrossRef]
- Gertsch, J.; Leonti, M.; Raduner, S.; Racz, I.; Chen, J-Z.; et al. Beta-caryophyllene is a dietary cannabinoid. Proc. Natl. Acad. Sci. 2008, 105, 9099–9104. [Google Scholar] [CrossRef]
- Chicca, A.; Marazzi, J.; Gertsch, J.; et al. The antinociceptive triterpene β-amyrin inhibits 2-arachidonoylglycerol (2-AG) hydrolysis without directly targeting cannabinoid receptors. Br. J. Pharmacol. 2012, 167, 1596–1608. [Google Scholar] [CrossRef]
- André, R.; Gomes, A. P.; Pereira-Leite, C.; Marques Da Costa, A.; Monteiro Rodriguez, L.; et al. The Entourage Effect in Cannabis Medicinal Products: A Comprehensive Review. Pharmaceuticals (Basel) 2024, 17, 1543. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, S.; Kathryn, A. B.; Paszcuk, A. F.; Passos, G. F.; Silva, E. S.; et al. Activation of cannabinoid receptors by the pentacyclic triterpene α, β-amyrin inhibits inflammatory and neuropathic persistent pain in mice. Pain 2011, 152, 1872–1887. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, E. C.; Gaveglio, V. L.; Pasquaré, S. J. The Endocannabinoid System Is Present in Rod Outer Segments from Retina and Is Modulated by Light. Mol. Neurobiol. 2019, 56, 7284–7295. [Google Scholar] [CrossRef] [PubMed]
- Piyanova, A.; Lomazzo, E.; Bindila, L.; Lerner, R.; Albayram, O.; et al. Age-related changes in the endocannabinoid system in the mouse hippocampus. Mech. Ageing Dev. 2015, 150, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Bilkei-Gorzo, A.; Albayram, B.; Draffehn, A.; Michel, K.; Piyanova, A.; et al. A chronic low dose of Δ9-tetrahydrocannabinol (THC) restores cognitive function in old mice. Nat. Med. 2017, 23, 782–787. [Google Scholar] [CrossRef]
- Yaginuma, S.; Kawana, H.; Aoki, J. Current Knowledge on Mammalian Phospholipase A1, Brief History, Structures, Biochemical and Pathophysiological Roles. Molecules 2022, 27, 2487. [Google Scholar] [CrossRef]
- Burstein, S.; Budrow, J.; Debatis, M.; Hunter, S. A.; Subramanian, A. Phospholipase participation in cannabinoid-induced release of free arachidonic acid. Biochem. Pharmacol. 1994, 48, 1253–1264. [Google Scholar] [CrossRef]
- Burstein, S. H. Eicosanoid mediation of cannabinoid actions. Bioorg. Med. Chem. 2019, 27, 2718–2728. [Google Scholar] [CrossRef] [PubMed]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
