Submitted:
22 January 2026
Posted:
26 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Three assumptions and Two Applications of Our 4G Model of Final Unification
2. Black Hole Radius Formula in the 4G Model Context
3. Overview of Atomic Radii
| Type | Definition of various atomic radii |
| Covalent Radius |
Half the bond length between two identical covalently bonded atoms; common in molecules |
| Ionic Radius | The size of an ion in a crystal lattice; varies by charge and coordination number. |
| Metallic Radius | Half the distance between nuclei of adjacent atoms in a metallic lattice. |
| Van der Waals Radius | Half the minimum distance between non-bonded atoms, often used for noble gases |
| Bohr Radius |
Physical constant representing the ground-state average distance of an electron from the nucleus in hydrogen atom (53pm) |
- 1)
- X-ray Crystallography: Measures distances between nuclei in crystals to determine atomic and ionic radii.
- 2)
- Electron Diffraction: Uses electron scattering patterns from molecules for bond length and radius estimation.
- 3)
- Spectroscopic Techniques: Analyse atomic spectra to deduce electron cloud extents and radii.
- 4)
- Theoretical Calculations: Quantum mechanical models, such as the Heisenberg Uncertainty Principle, estimate the probability boundary for the outer electrons.
4. Generalized Scaling Law for Atomic Radii
- a)
- For hydrogen atom, modern theoretical values use statistical averages from vast crystal structure data, confirming the value of (31 to 37) pm with slight variation due to chemical environments.
- b)
- Without the correction factor f(x,y,z), for Z=1 to 118, atomic radii seem to have a range of 33 pm to 227 pm.
- c)
- Atoms as composite entities formed by nuclear and electromagnetic forces unified in a gravitational analogue framework,
- d)
- Electronic shell filling modulates atomic radii by altering effective nuclear charge and electron cloud distribution,
- e)
- Variations and anomalies in periodic atomic radii trends arise naturally from f(x,y,z).
- f)
5. Correction Factors and Comparison with Experimental Data

6. Implications and Future Directions
- 1)
- It offers a conceptually simple yet physically profound bridge connecting nuclear physics, gravitation-inspired unification frameworks, and atomic-scale quantum chemistry.
- 2)
- Provides a predictive tool linking fundamental constants to chemical bonding distances, potentially improving computational modelling and materials design.
- 3)
- Opens avenues to incorporate relativistic effects and electron correlation into the correction factor f(x,y,z), further refining predictive power.
- 4)
- Suggests new cross-disciplinary research linking astrophysical black hole physics concepts with atomic and molecular sciences.
- 5)
- Encourages experimental efforts to test subtle predictions, especially in heavy elements where relativistic and unification effects may be pronounced.
7. Conclusion
Data availability statement
Conflicts of Interest
Acknowledgments
References
- Rutherford, E. The scattering of α and β particles by matter and the structure of the atom. Philosophical Magazine 1911, 21, 669–688. [Google Scholar] [CrossRef]
- Slater, C. Atomic Radii in Crystals. The Journal of Chemical Physics 1964, 41, 3199–3204. [Google Scholar] [CrossRef]
- Bondi. van der Waals Volumes and Radii. The Journal of Physical Chemistry 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Clementi, E.; Raimondi, D.L.; Reinhardt, W.P. Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons. The Journal of Chemical Physics 1967, 47, 1300–1307. [Google Scholar] [CrossRef]
- Ghosh, D.C.; Biswas, R. Theoretical Calculation of Absolute Radii of Atoms and Ions. Part 1. The Atomic Radii. Int. J. Mol. Sci. 2002, 3, 87–113. [Google Scholar] [CrossRef]
- Ganguly, P. Atomic sizes and atomic properties. J. Phys. B At. Mol. Opt. Phys. 2008, 41, 105002. [Google Scholar] [CrossRef]
- Mantina, M.; Chamberlin, A.C.; Valero, R.; Cramer, C.J.; Truhlar, D.G. Consistent van der Waals Radii for the Whole Main Group. The Journal of Physical Chemistry A. American Chemical Society (ACS) 2009, 113, 5806–5812. [Google Scholar] [CrossRef]
- Rahm, M.; Hoffmann, R.; Ashcroft, N.W. Atomic and Ionic Radii of Elements. 1–96. Chemistry (Weinheim an der Bergstrasse, Germany) 2016, 22, 14625–14632. [Google Scholar] [CrossRef]
- Yadav, P.; Tandon, H.; Malik, B.; et al. A quest for the universal atomic radii. Struct. Chem. 2022, 33, 389–394. [Google Scholar] [CrossRef]
- Owolabi, T.O.; Akande, K.O.; Olatunji, S.O. Estimation Of The Atomic Radii Of Periodic Elements Using Support Vector Machine. International Journal of Advanced Information Science and Technology 2014, 8, 105–113. [Google Scholar]
- Griffiths, D.J. Introduction to Quantum Mechanics, 2nd ed.; Pearson Prentice Hall, 2005. [Google Scholar]
- Pyykkö, P. Relativistic effects in chemistry: more common than you thought. Annual Review of Physical Chemistry 2008, 63, 45–64. [Google Scholar] [CrossRef]
- Seshavatharam, U.V.S; Gunavardhana Naidu, T.; Lakshminarayana, S. Nuclear evidences for confirming the physical existence of 585 GeV weak fermion and galactic observations of TeV radiation. International Journal of Advanced Astronomy 2025, 13, 1–17. [Google Scholar] [CrossRef]
- Seshavatharam, U.V.S.; Gunavardhana Naidu, T.; Lakshminarayana, S. To confirm the existence of heavy weak fermion of rest energy 585 GeV. AIP Conf. Proc. 2022, 2451, 020003. [Google Scholar]
- Seshavatharam, U.V.S.; Lakshminarayana, S. 4G model of final unification – A brief report. Journal of Physics: Conference Series 2022, 2197, 012029. [Google Scholar] [CrossRef]
- Seshavatharam, U.V.S.; Gunavardhana Naidu, T.; Lakshminarayana, S. 4G Model of Heavy Electroweak Charged 585 GeV Fermions as the Supposed Microscopic Origin of the 1.17 TeV All-Electron Spectral Break. International Journal of Advance Research and Innovative Ideas in Education 2025, 11, 2116–2140. [Google Scholar]
- Seshavatharam, U.V.S.; Lakshminarayana, S. Inferring and confirming the rest mass of electron neutrino with neutron life time and strong coupling constant via 4G model of final unification. World Scientific News 2024, 191, 127–156. [Google Scholar]
- Cox, B.; Mann, R.B. Black holes and fundamental constants: An overview. Physics Reports 2020, 865, 1–32. [Google Scholar]
- Seshavatharam, U.V.S.; Gunavardhana, T.N.; Lakshminarayana, S. Avogadro’s Number: History, Scientific Role, State-of-the-Art, and Frontier Computational Perspectives. Preprints 2025, 2025080338. [Google Scholar]
- d’Enterria, D; et al. The strong coupling constant: state of the art and the decade ahead. J. Phys. G: Nucl. Part. Phys. 2024, 51, 090501. [Google Scholar] [CrossRef]
- Seshavatharam, U.V.S.; Lakshminarayana, S. Understanding the Origins of Quark Charges, Quantum of Magnetic Flux, Planck’s Radiation Constant and Celestial Magnetic Moments with the 4G Model of Nuclear Charge. Current Physics 2024, 1, e090524229812. [Google Scholar] [CrossRef]
- Patel, A.D. EPR Paradox, Bell Inequalities and Peculiarities of Quantum Correlations. arXiv 2025, arXiv:2502.06791v1. [Google Scholar] [CrossRef]
- Cheung, C.; Hillman, A.; Remmen, G.N. String Theory May Be Inevitable as a Unified Theory of Physics. Physics World 2025. [Google Scholar]
- Seshavatharam, U.V.S.; Gunavardhana, T.N.; Lakshminarayana, S. Advancing String Theory with 4G Model of Final Unification. Preprints 2025, 2025110136.
- Abokhalil, A. The Higgs Mechanism and Higgs Boson: Unveiling the Symmetry of the Universe. arXiv 2023, arXiv:2306.01019. [Google Scholar] [CrossRef]
- Pyykkö, P.; Atsumi, M. Molecular single-bond covalent radii for elements 1-118. Chemistry 2009, 15, 186–197. [Google Scholar] [CrossRef]
- Atomic radii of the elements (data page). Available online: https://en.wikipedia.org/wiki/Atomic_radii_of_the_elements_(data_page).

| S.No | Interaction | String Tension | String energy |
|
1 |
Weak |
||
|
2 |
Strong |
||
|
3 |
Electromagnetic |
| S.No | Interaction | String Tension | String energy |
|
1 |
Weak |
||
|
2 |
Strong |
||
|
3 |
Electromagnetic |
||
| Proton number |
Element Name |
Period number |
Approx. Stable mass number As |
pm |
Estimated (pm) |
Experimental single bond covalent radius (pm) |
%Error | |
|---|---|---|---|---|---|---|---|---|
| 2 | HELIUM | 1 | 4 | 52.4 | 1.00 | 52.4 | 46 | -13.9 |
| 3 | LITHIUM | 2 | 6 | 60.0 | 2.67 | 159.9 | 133 | -20.2 |
| 4 | BERYLLIUM | 2 | 8 | 66.0 | 2.00 | 132.0 | 102 | -29.4 |
| 5 | BORON | 2 | 10 | 71.1 | 1.60 | 113.8 | 85 | -33.8 |
| 6 | CARBON | 2 | 12 | 75.6 | 1.33 | 100.7 | 75 | -34.3 |
| 7 | NITROGEN | 2 | 14 | 79.5 | 1.14 | 90.9 | 71 | -28.0 |
| 8 | OXYGEN | 2 | 16 | 83.2 | 1.00 | 83.2 | 63 | -32.0 |
| 9 | FLUORINE | 2 | 19 | 88.1 | 0.88 | 77.9 | 64 | -21.8 |
| 10 | NEON | 2 | 21 | 91.0 | 0.80 | 72.6 | 67 | -8.3 |
| 11 | SODIUM | 3 | 23 | 93.8 | 1.63 | 153.1 | 155 | 1.2 |
| 12 | MAGNESIUM | 3 | 25 | 96.5 | 1.50 | 144.4 | 139 | -3.9 |
| 13 | ALUMINIUM | 3 | 27 | 99.0 | 1.38 | 136.8 | 126 | -8.6 |
| 14 | SILICON | 3 | 29 | 101.4 | 1.28 | 130.1 | 116 | -12.2 |
| 15 | PHOSPHORUS | 3 | 31 | 103.7 | 1.20 | 124.2 | 111 | -11.9 |
| 16 | SULFUR | 3 | 34 | 106.9 | 1.12 | 119.6 | 103 | -16.1 |
| 17 | CHLORINE | 3 | 36 | 109.0 | 1.05 | 114.8 | 99 | -16.0 |
| 18 | ARGON | 3 | 38 | 110.9 | 1.00 | 110.4 | 96 | -15.1 |
| 19 | POTASSIUM | 4 | 40 | 112.9 | 1.68 | 189.3 | 196 | 3.4 |
| 20 | CALCIUM | 4 | 43 | 115.6 | 1.59 | 183.5 | 171 | -7.3 |
| 21 | SCANDIUM | 4 | 45 | 117.4 | 1.51 | 177.6 | 148 | -20.0 |
| 22 | TITANIUM | 4 | 47 | 119.1 | 1.44 | 172.1 | 136 | -26.5 |
| 23 | VANADIUM | 4 | 49 | 120.8 | 1.38 | 167.0 | 134 | -24.6 |
| 24 | CHROMIUM | 4 | 52 | 123.2 | 1.32 | 162.6 | 122 | -33.3 |
| 25 | MANGANESE | 4 | 54 | 124.7 | 1.27 | 158.2 | 119 | -32.9 |
| 26 | IRON | 4 | 56 | 126.3 | 1.22 | 154.1 | 116 | -32.8 |
| 27 | COBALT | 4 | 59 | 128.5 | 1.17 | 150.4 | 111 | -35.5 |
| 28 | NICKEL | 4 | 61 | 129.9 | 1.13 | 146.8 | 110 | -33.4 |
| 29 | COPPER | 4 | 63 | 131.3 | 1.09 | 143.4 | 112 | -28.0 |
| 30 | ZINC | 4 | 66 | 133.4 | 1.05 | 140.2 | 118 | -18.9 |
| 31 | GALLIUM | 4 | 68 | 134.7 | 1.02 | 137.2 | 124 | -10.6 |
| 32 | GERMANIUM | 4 | 71 | 136.6 | 0.98 | 134.4 | 121 | -11.0 |
| 33 | ARSENIC | 4 | 73 | 137.9 | 0.95 | 131.6 | 121 | -8.8 |
| 34 | SELENIUM | 4 | 75 | 139.2 | 0.93 | 129.0 | 116 | -11.2 |
| 35 | BROMINE | 4 | 78 | 141.0 | 0.90 | 126.6 | 114 | -11.0 |
| 36 | KRYPTON | 4 | 80 | 142.2 | 0.87 | 124.2 | 117 | -6.2 |
| 37 | RUBIDIUM | 5 | 83 | 143.9 | 1.32 | 190.5 | 210 | 9.3 |
| 38 | STRONTIUM | 5 | 85 | 145.1 | 1.29 | 187.2 | 185 | -1.2 |
| 39 | YTTRIUM | 5 | 88 | 146.8 | 1.25 | 183.9 | 163 | -12.8 |
| 40 | ZIRCONIUM | 5 | 90 | 147.9 | 1.22 | 180.8 | 154 | -17.4 |
| 41 | NIOBIUM | 5 | 93 | 149.5 | 1.19 | 177.8 | 147 | -20.9 |
| 42 | MOLYBDENUM | 5 | 95 | 150.6 | 1.16 | 175.0 | 138 | -26.8 |
| 43 | TECHNETIUM | 5 | 98 | 152.1 | 1.13 | 172.2 | 128 | -34.5 |
| 44 | RUTHENIUM | 5 | 100 | 153.2 | 1.11 | 169.6 | 125 | -35.7 |
| 45 | RHODIUM | 5 | 103 | 154.7 | 1.08 | 166.9 | 125 | -33.6 |
| 46 | PALLADIUM | 5 | 106 | 156.2 | 1.05 | 164.4 | 120 | -37.0 |
| 47 | SILVER | 5 | 108 | 157.2 | 1.03 | 162.1 | 128 | -26.6 |
| 48 | CADMIUM | 5 | 111 | 158.6 | 1.01 | 159.7 | 136 | -17.4 |
| 49 | INDIUM | 5 | 113 | 159.5 | 0.99 | 157.6 | 142 | -11.0 |
| 50 | TIN | 5 | 116 | 160.9 | 0.97 | 155.3 | 140 | -10.9 |
| 51 | ANTIMONY | 5 | 119 | 162.3 | 0.94 | 153.1 | 140 | -9.4 |
| 52 | TELLURIUM | 5 | 121 | 163.2 | 0.93 | 151.2 | 136 | -11.2 |
| 53 | IODINE | 5 | 124 | 164.6 | 0.91 | 149.2 | 133 | -12.2 |
| 54 | XENON | 5 | 127 | 165.9 | 0.89 | 147.2 | 131 | -12.3 |
| 55 | CAESIUM | 6 | 129 | 166.7 | 1.26 | 209.5 | 232 | 9.7 |
| 56 | BARIUM | 6 | 132 | 168.0 | 1.23 | 206.7 | 196 | -5.5 |
| 57 | LANTHANUM | 6 | 135 | 169.3 | 1.21 | 204.1 | 180 | -13.4 |
| 58 | CERIUM | 6 | 138 | 170.5 | 1.18 | 201.5 | 163 | -23.6 |
| 59 | PRASEODYMIUM | 6 | 140 | 171.4 | 1.16 | 199.3 | 176 | -13.3 |
| 60 | NEODYMIUM | 6 | 143 | 172.6 | 1.14 | 196.9 | 174 | -13.1 |
| 61 | PROMETHIUM | 6 | 146 | 173.8 | 1.12 | 194.5 | 173 | -12.4 |
| 62 | SAMARIUM | 6 | 149 | 174.9 | 1.10 | 192.1 | 172 | -11.7 |
| 63 | EUROPIUM | 6 | 151 | 175.7 | 1.08 | 190.3 | 168 | -13.3 |
| 64 | GADOLINIUM | 6 | 154 | 176.9 | 1.06 | 188.0 | 169 | -11.3 |
| 65 | TERBIUM | 6 | 157 | 178.0 | 1.04 | 185.9 | 168 | -10.6 |
| 66 | DYSPROSIUM | 6 | 160 | 179.2 | 1.03 | 183.8 | 167 | -10.0 |
| 67 | HOLMIUM | 6 | 163 | 180.3 | 1.01 | 181.7 | 166 | -9.5 |
| 68 | ERBIUM | 6 | 166 | 181.4 | 0.99 | 179.7 | 165 | -8.9 |
| 69 | THULIUM | 6 | 168 | 182.1 | 0.98 | 178.1 | 164 | -8.6 |
| 70 | YTTERBIUM | 6 | 171 | 183.2 | 0.96 | 176.2 | 170 | -3.6 |
| 71 | LUTETIUM | 6 | 174 | 184.2 | 0.95 | 174.3 | 162 | -7.6 |
| 72 | HAFNIUM | 6 | 177 | 185.3 | 0.93 | 172.5 | 152 | -13.5 |
| 73 | TANTALUM | 6 | 180 | 186.3 | 0.92 | 170.7 | 146 | -16.9 |
| 74 | TUNGSTEN | 6 | 183 | 187.4 | 0.90 | 168.9 | 137 | -23.3 |
| 75 | RHENIUM | 6 | 186 | 188.4 | 0.89 | 167.2 | 131 | -27.6 |
| 76 | OSMIUM | 6 | 189 | 189.4 | 0.87 | 165.5 | 129 | -28.3 |
| 77 | IRIDIUM | 6 | 192 | 190.4 | 0.86 | 163.9 | 122 | -34.3 |
| 78 | PLATINUM | 6 | 195 | 191.4 | 0.85 | 162.3 | 123 | -31.9 |
| 79 | GOLD | 6 | 198 | 192.3 | 0.84 | 160.7 | 124 | -29.6 |
| 80 | MERCURY | 6 | 201 | 193.3 | 0.82 | 159.1 | 133 | -19.6 |
| 81 | THALLIUM | 6 | 204 | 194.3 | 0.81 | 157.6 | 144 | -9.5 |
| 82 | LEAD | 6 | 207 | 195.2 | 0.80 | 156.1 | 144 | -8.4 |
| 83 | BISMUTH | 6 | 210 | 196.1 | 0.79 | 154.7 | 151 | -2.4 |
| 84 | POLONIUM | 6 | 213 | 197.1 | 0.78 | 153.3 | 145 | -5.7 |
| 85 | ASTATINE | 6 | 216 | 198.0 | 0.77 | 151.9 | 147 | -3.3 |
| 86 | RADON | 6 | 219 | 198.9 | 0.76 | 150.5 | 142 | -6.0 |
| 87 | FRANCIUM | 7 | 222 | 199.8 | 1.02 | 203.0 | ||
| 88 | RADIUM | 7 | 226 | 201.0 | 1.00 | 200.7 | 201 | 0.2 |
| 89 | ACTINIUM | 7 | 229 | 201.9 | 0.99 | 198.9 | 186 | -7.0 |
| 90 | THORIUM | 7 | 232 | 202.8 | 0.97 | 197.2 | 175 | -12.7 |
| 91 | PROTACTINIUM | 7 | 235 | 203.6 | 0.96 | 195.5 | 169 | -15.7 |
| 92 | URANIUM | 7 | 238 | 204.5 | 0.95 | 193.9 | 170 | -14.1 |
| 93 | NEPTUNIUM | 7 | 241 | 205.4 | 0.94 | 192.3 | 171 | -12.4 |
| 94 | PLUTONIUM | 7 | 245 | 206.5 | 0.92 | 190.1 | 172 | -10.5 |
| 95 | AMERICIUM | 7 | 248 | 207.3 | 0.91 | 188.6 | 166 | -13.6 |
| 96 | CURIUM | 7 | 251 | 208.2 | 0.90 | 187.0 | 166 | -12.7 |
| 97 | BERKELIUM | 7 | 254 | 209.0 | 0.89 | 185.5 | ||
| 98 | CALIFORNIUM | 7 | 257 | 209.8 | 0.88 | 184.1 | ||
| 99 | EINSTEINIUM | 7 | 261 | 210.9 | 0.86 | 182.1 | ||
| 100 | FERMIUM | 7 | 264 | 211.7 | 0.85 | 180.7 | ||
| 101 | MENDELEVIUM | 7 | 267 | 212.5 | 0.84 | 179.3 | ||
| 102 | NOBELIUM | 7 | 271 | 213.6 | 0.83 | 177.4 | ||
| 103 | LAWRENCIUM | 7 | 274 | 214.3 | 0.82 | 176.0 | ||
| 104 | RUTHERFORDIUM | 7 | 277 | 215.1 | 0.81 | 174.7 | ||
| 105 | DUBNIUM | 7 | 281 | 216.1 | 0.80 | 172.9 | ||
| 106 | SEABORGIUM | 7 | 284 | 216.9 | 0.79 | 171.6 | ||
| 107 | BOHRIUM | 7 | 287 | 217.7 | 0.78 | 170.4 | ||
| 108 | HASSIUM | 7 | 291 | 218.7 | 0.77 | 168.6 | ||
| 109 | MEITNERIUM | 7 | 294 | 219.4 | 0.76 | 167.4 | ||
| 110 | DARMSTADTIUM | 7 | 297 | 220.2 | 0.76 | 166.2 | ||
| 111 | ROENTGENIUM | 7 | 301 | 221.2 | 0.74 | 164.6 | ||
| 112 | COPERNICIUM | 7 | 304 | 221.9 | 0.74 | 163.4 | ||
| 113 | NIHONIUM | 7 | 308 | 222.9 | 0.73 | 161.8 | ||
| 114 | FLEROVIUM | 7 | 311 | 223.6 | 0.72 | 160.7 | ||
| 115 | MOSCOVIUM | 7 | 315 | 224.5 | 0.71 | 159.1 | ||
| 116 | LIVERMORIUM | 7 | 318 | 225.2 | 0.70 | 158.0 | ||
| 117 | TENNESSINE | 7 | 322 | 226.2 | 0.69 | 156.5 | ||
| 118 | OGANESSON | 7 | 325 | 226.9 | 0.69 | 155.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
