Submitted:
22 January 2026
Posted:
23 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. High Shear Wet Granulation
2.2. Lenterra In-Line Rheometer
2.3. Design of Experiment
2.4. Granule Analysis
2.5. Tablet Fabrication
2.5. Tablet Dissolution
3. Results and Discussion
3.1. Granulation Stages as Observed by LIR
- [0 to 3 min] Dry powder mixing. MFPM and CVFPM are steady at relatively low
- level, reflecting low density and uniformity of the dry powder;
- [3 to 3.5 min] Start of water addition and extensive nucleation. CVFPM increases reflecting increasing non-uniformity of the powder due to agglomerate formation, reaching maximum at approximately 3.5 minutes. One would expect the distribution of masses in the powder to be widest at this time, when large number of nuclei and low-density agglomerates formed, but a significant amount of dry powder still remains;
- [3.5 to 5.3 min] Granule consolidation and densification phase starts. MFPM grows fast reflecting increasing number of granules in the powder, CVFPM begins to fall indicating that uniformity of the powder increases when decreasingly less dry powder remains.
- [5.3 min] The total wetting occurs and nucleation stage ends at 5.3 minutes or 2.3 minutes after water addition started. A minimum is observed at this time on the CVFPM evolution, and an elbow point is observed approximately at this time on the MFPM evolution;
- [5.3 to 8 min] Granule consolidation and densification continue. MFPM continues to grow, CVFPM gradually increases showing secondary maxima and minima, the formation of increasingly heavier granules widens particle size distribution. Note that the termination of water addition at 6.2 minutes does not affect the MFPM and CVFPM growth continuing from 5.3 min to 8 min. This means that adding extra amount of water after 5.3 min does not significantly affect the chemistry of the wet mass;
- [8 to 10 min] Larger granule consolidation. MFPM and CVFPM increase rapidly, CVFPM demonstrates unstable growth, MFPM also showing local minima. Figure 3 and Figure 4 show photographs and particle size distributions of the powder released from the granulator at the end of the granulation cycle. The granules of 5 to 10 mm were observed.
3.2. Impact of Water Addition on Granule Properties (Formulation 1)
3.3. Impact of Water Addition on Granule Properties (Formulation 2)
3.4. Tablet Dissolution Tests
4. Conclusions
Acknowledgments
Abbreviations
| LIR | Lenterra In-line Rheometer |
| PAT | Process Analytical Technology |
| HSWG | High Shear Wet Granulation |
| API | Active Pharmaceutical Ingredient |
| APAP | Acetaminophen |
| PSD | Particle Size Distribution |
| FPM | Force Pulse Magnitude |
| MFPM | Mean FPM |
| CVFPM | Coefficient of Variation of FPM |
References
- Handbook of Pharmaceutical Wet Granulation: Theory and Practice in a Quality by Design Paradigm, 2nd ed.; Narang, A.S., Badawy, S.I.F., Eds.; Academic Press, 2025. [Google Scholar]
- Food Drug Administration Center for Drugs Evaluation Research. Guidance for industry: PAT - a framework for innovative pharmaceutical manufacturing and quality assurance. 2004. Available online: https://www.fda.gov/media/71012/download.
- Alves, A.R.; Simões, M.F.; Simões, S.; Gomes, J. A review on the scale-up of high-shear wet granulation processes and the impact of process parameters. Particuology 2024, 92, 180–195. [Google Scholar] [CrossRef]
- Jang, E.H.; Park, Y.S.; Kim, M.-S.; Choi, D.H. Model-based scale-up methodologies for pharmaceutical granulation. Pharmaceutics 2020, 12, 453. [Google Scholar] [CrossRef] [PubMed]
- Badawy, S.I.F.; Narang, A.S.; Lamarche, K.; Subramanian, G.; Varia, S.A. Mechanistic basis for the effects of process parameters on quality attributes in high shear wet granulation. Int. J. Pharmaceutics 2012, 439, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Indian Pharmaceutical Alliance (IPA). The Guidance on Process Analytical Tools (PAT) on Oral Solids and API. 2024. Available online: https://www.ipa-india.org/wp-content/uploads/2024/06/Guidance_on_Process_Analytical_Tools_(PAT)_in_Oral_Solids_and_API.pdf.
- Hansuld, E.M.; Briens, L. A review of monitoring methods for pharmaceutical wet granulation. Int. J. Pharmaceutics 2014, 472, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, K.; Ueno, A.; Hattori, Y.; Sasaki, T.; Sakamoto, T.; Otsuka, M. Analysis of granulation mechanism in a high-shear wet granulation method using near-infrared spectroscopy and stirring power consumption. Colloid Polym. Sci. 2020, 298, 977–987. [Google Scholar] [CrossRef]
- Jørgensen, A.C.; Rantanen, J.; Luukkonen, P.; Laine, S.; Yliruusi, J. Visualization of a pharmaceutical unit operation: wet granulation. Anal. Chem. 2004, 76, 5331–5338. [Google Scholar] [CrossRef]
- Atanaskova, E.; Angelovska, V.; Chachorovska, M.; Stojanovska, N.A.; Petrushevski, G.; Makreski, P.; Geskovski, N. Development of novel portable NIR spectroscopy process analytical technology (PAT) tool for monitoring the transition of ibuprofen to ibuprofen sodium during wet granulation process. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 317, 124369. [Google Scholar] [CrossRef]
- Narang, A.S.; Stevens, T.; Macias, K.; Paruchuri, S.; Gao, Z.; Badawy, S. Application of in-line focused beam reflectance measurement to brivanib alaninate wet granulation process to enable scale-up and attribute-based monitoring and control strategies. J. Pharm. Sci. 2017, 106, 224–233. [Google Scholar] [CrossRef]
- Petrak, D.; Dietrich, S.; Eckardt, G.; Köhler, M. In-line particle sizing for real-time process control by fibre-optical spatial filtering technique (SFT). Adv. Powder Technol. 2011, 22, 203–208. [Google Scholar]
- Huang, J; Kaul, G; Utz, J; Hernandez, P; Wong, V; Bradley, D; Nagi, A; O’Grady, D. A PAT approach to improve process understanding of high shear wet granulation through in-line particle measurement using FBRM C35. J. Pharm. Sci. 2010, 99, 3205–3212. [Google Scholar] [CrossRef]
- Arp, Z; Smith, B; Dycus, E; O’Grady, D. Optimization of a high shear wet granulation process using focused beam reflectance measurement and particle vision microscope technologies. J Pharm Sci 2011, 100, 3431–3440. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.; O’Malley, C.J.; Wade, M.J.; Martin, E.B.; Page, T.; Montague, G.A. Opportunities for process control and quality assurance using online NIR analysis to a continuous wet granulation tableting line. J. Pharm. Innov. 2020, 15, 26–40. [Google Scholar] [CrossRef]
- Covari, V.; Fry, W.C.; Seibert, W.L.; Augsburger, L. Instrumentation of a high shear mixer: evaluation and comparison of a new capacitive sensor, a wattmeter, and a strain-gage torque sensor for wet granulation monitoring. Pharm. Res. 1992, 9, 1525–1533. [Google Scholar] [CrossRef]
- Hansuld, E. M.; Briens, L.; McCann, J.A.B.; Sayani, A. Audible Acoustics in High-Shear Wet Granulation: Application of Frequency Filtering. Int. J. Pharm. 2009, 378, 37–44. [Google Scholar] [CrossRef]
- Ohike, A.; Ashihara, K.; Ibuki, R. Granulation monitoring by fast Fourier transform technique. Chem. Pharm. Bull. 1999, 47, 1734–1739. [Google Scholar] [CrossRef]
- Talu, I.; Tardos, G.I.; Ommen, J.R. Use of stress fluctuations to monitor wet granulation of powders. Powder Technol. 2001, 117, 149–162. [Google Scholar] [CrossRef]
- Levin, M. How to scale-up a wet granulation end point scientifically; Elsevier Science & Technology, 2015. [Google Scholar]
- Parikh, D.M. Handbook of pharmaceutical granulation technology, 4th ed.; CRC Press, 2010. [Google Scholar]
- Watano, S. Online Monitoring. In Handbook of Powder Technology; Elsevier B.V, 2007; vol. 11, pp. 477–498. [Google Scholar]
- Leuenberger, H.; Bier, H.P.; Sucker, H. Determination of the liquid requirement for a conventional granulation process. German Chem. Eng. 1981, 4, 13–18. [Google Scholar]
- Holm, P.; Schaefer, T.; Larsen, C. End-point detection in a wet granulation process. Pharm. Dev. Technol. 2001, 6, 181–192. [Google Scholar] [CrossRef]
- Laicher, A.; Profitlich, T.; Schwitzer, K.; Ahlert, D. A modified signal analysis system for end-point control during granulation. Eur. J. Pharm. Sci. 1997, 5, 7–14. [Google Scholar] [CrossRef]
- Sheverev, V.A.; Stepaniuk, V.; Narang, A.S. Principles and applications of drag force flow sensor. In Handbook of Pharmaceutical Wet Granulation: Theory and Practice in a Quality by Design Paradigm, 2nd ed.; Narang, A.S., Badawy, S.I. F., Eds.; Academic Press, 2025; pp. 509–556. [Google Scholar]
- Munu, I.; Nicusan, A.L.; Crooks, J.; Pitt, K.; Windows-Yule, C.; Ingram, A. Predicting tablet properties using in-line measurements and evolutionary equation discovery: A high shear wet granulation study. Int. J. Pharmaceutics 2024, 661, 124405. [Google Scholar] [CrossRef]
- Munu, I.; Nicusan, A.L.; Crooks, J.; Pitt, K.; Windows-Yule, C.; Ingram, A. Using in-line measurement and statistical analyses to predict tablet properties compressed using a Styl’One compaction simulator: A high shear wet granulation study. Int. J. Pharmaceutics 2025, 669, 125098. [Google Scholar] [CrossRef]
- Fayed, M.H.; Abdel-Rahman, S.I.; Alanazi, F.K.; Ahmed, M.O.; Tawfeek, H.M.; Al-Shedfat, R.I. High-shear granulation process: influence of processing parameters on critical quality attributes of acetaminophen granules and tablets using design of experiment approach. Acta Pol. Pharm. 2017, 74, 235–248. [Google Scholar]
- Cavinato, M.; Andreato, E.; Bresciani, M.; Pignatonec, I.; Bellazzi, G.; Franceschinis, E.; Realdon, N.; Canua, P.; Santomaso, A.C. Combining formulation and process aspects for optimizing the high-shear wet granulation of common drugs. Int. J. Pharm. 2011, 416, 229–241. [Google Scholar] [CrossRef]
- Kyttä, K.M.; Lakio, S.; Wikström, H.; Sulemanji, A.; Fransson, M.; Ketolainen, J.; Tajarobi, P. Comparison between twin-screw and high-shear granulation - The effect of filler and active pharmaceutical ingredient on the granule and tablet properties. Powder Technol. 2020, 376, 187–198. [Google Scholar] [CrossRef]
- Oka, S.; Smrčka, D.; Kataria, A.; Emady, H.; Muzzio, F.; Štěpánek, F.; Ramachandran, R. Analysis of the origins of content non-uniformity in high-shear wet granulation. Int. J. Pharm. 2017, 528, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Keleb, E.I.; Vermeire, A.; Vervaet, C.; Remon, J.P. Extrusion granulation and high shear granulation of different grades of lactose and highly dosed drugs: a comparative study. Drug Dev. Ind. Pharm. 2004, 30, 679–691. [Google Scholar] [CrossRef] [PubMed]
- Macho, O.; Gabrišová, L.; Brokešová, J.; Svačinová, P.; Mužíková, J.; Galbavá, P.; Blaško, J.; Šklubalová, Z. Systematic study of paracetamol powder mixtures and granules tabletability: Key role of rheological properties and dynamic image analysis. Int. J. Pharm. 2021, 608, 121110. [Google Scholar] [CrossRef]
- Iveson, S.M.; Litster, J.D.; Hapgood, K.; Ennis, B.J. Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technol. 2001, 117, 3–39. [Google Scholar] [CrossRef]
- Gao, T.; Singaravelu, A.S.S.; Oka, S.; Ramachandran, R.; Štepánek, F.; Chawla, N.; Emady, H.N. Powder bed packing and API content homogeneity of granules in single drop granule formation. Powder Technol. 2020, 366, 12–21. [Google Scholar] [CrossRef]









| Component | Manufacturer and grade | Quantity as % of total tablet weight |
|
| Formulation 1 | Formulation 2 | ||
| Intra-granular | |||
| Acetaminophen (APAP) | Sigma-Aldrich, USA | 75 | 90 |
| Polyvinylpyrrolidone (PVP) | RND Center INC, CA, USA M.W. =40,000 |
5 | 5 |
| Cellulose microcrystalline | Sigma-Aldrich, USA Avicel® PH-101 |
6.8 | 1.7 |
| Lactose monohydrate | Merck, Germany | 10.1 | 2.6 |
| Croscarmellose sodium | Spectrum Chemical Mfg. Corp, USA | 1.3 | 0.3 |
| Extra-granular | |||
| Croscarmellose sodium | Spectrum Chemical Mfg. Corp, USA | 1.3 | 0.3 |
| Magnesium stearate | Spectrum Chemical Mfg. Corp, USA | 0.5 | 0.1 |
| Wet massing time → | 1 min | 5 min |
| Water addition ↓ | ||
| 0.6 min or 3 ml (3.75% of dry powder weight) |
formulations 1 and 2 | formulation 1 |
| 2.4 min or 12 ml (15% of dry powder weight) |
formulations 1 and 2 | formulation 1 |
| 3.2 min or 16 ml (20% of dry powder weight) |
formulations 1 and 2 | formulation 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).