This research presents a comprehensive framework for optimizing Electric Vehicle (EV) charging infrastructure along the Lake Michigan circuit (LMC) in Michigan to support ecotourism, considering both slow charging at destinations and fast charging along the corridor. The framework identifies the optimum location and number of Level 2 chargers and Direct Current Fast Chargers (DCFC), using heuristic algorithms. The study evaluates infrastructure planning based on four key objectives: (1) minimizing overall charging infrastructure costs, (2) reducing grid network upgrade costs, (3) providing an acceptable level of service to long-distance travelers using DCFCs by minimizing queuing delays and deviations from their intended routes, and (4) improving destination charging to mitigate battery degradation by minimizing unserved charging demand from Level 2 chargers redirected to DCFCs. The integration of Level 2 and DCFC networks facilitates strategic investment by effectively managing charging demand, allowing unserved Level 2 demand to be accommodated at DCFC stations while adhering to budgetary constraints. The results show that increasing the budget from $15 to $20 million reduces user inconvenience by 47%, while a further increase to $25 million yields an additional 18% reduction. Additionally, increasing users’ value of time from $13 to $36 per hour results in a 50% reduction in average queuing time.