Submitted:
21 January 2026
Posted:
22 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Clinical and Laboratory Assessment
2.3. Echocardiographic Evaluation and MAC Definition
2.4. Ethical Considerations
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. ROC Analysis of Hematological Inflammatory Markers

3.3. Inflammatory Markers in Relation to Clinical and Cardiometabolic Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AUC | Area Under the Curve |
| BMI | Body Mass Index |
| BP | Blood Pressure |
| CI | Confidence Interval |
| CRP | C-Reactive Protein |
| EDTA | Ethylenediaminetetraacetic Acid |
| HbA1c | Hemoglobin A1c (Glycated Hemoglobin) |
| hs-CRP | High-Sensitivity C-Reactive Protein |
| IQR | Interquartile Range |
| LLR | Lymphocyte-to-Leukocyte Ratio |
| LVEF | Left Ventricular Ejection Fraction |
| MAC | Mitral Annular Calcification |
| NLR | Neutrophil-to-Lymphocyte Ratio |
| NMR | Neutrophil-to-Monocyte Ratio |
| NTproBNP | N-Terminal Pro-B-Type Natriuretic Peptide |
| NYHA | New York Heart Association |
| PLR | Platelet-to-Lymphocyte Ratio |
| ROC | Receiver Operating Characteristic |
| SD | Standard Deviation |
| SIRI | Systemic Inflammation Response Index |
| SII | Systemic Immune-Inflammation Index |
| SI | Systemic Inflammation |
| SPSS | Statistical Package for the Social Sciences |
| T2D | Type 2 Diabetes |
References
- Abramowitz, Y.; Jilaihawi, H.; Chakravarty, T.; Mack, M.J.; Makkar, R.R. Mitral Annulus Calcification. J Am Coll Cardiol 2015, 66, 1934–1941. [Google Scholar] [CrossRef]
- Cavalcanti, L.R.P.; Sá, M.P.B.O.; Perazzo, Á.M.; Escorel Neto, A.C.; Gomes, R.A.F.; Weymann, A.; Zhigalov, K.; Ruhparwar, A.; Lima, R.C. Mitral Annular Calcification: Association with Atherosclerosis and Clinical Implications. Curr Atheroscler Rep 2020, 22, 9. [Google Scholar] [CrossRef] [PubMed]
- Massera, D.; Trivieri, M.G.; Andrews, J.P.M.; Sartori, S.; Abgral, R.; Chapman, A.R.; Jenkins, W.S.A.; Vesey, A.T.; Doris, M.K.; Pawade, T.A.; et al. Disease Activity in Mitral Annular Calcification. Circ Cardiovasc Imaging 2019, 12. [Google Scholar] [CrossRef]
- Willner, N.; Burwash, I.G.; Beauchesne, L.; Chan, V.; Vulesevic, B.; Ascah, K.; Coutinho, T.; Promislow, S.; Stadnick, E.; Chan, K.L.; et al. Natural History of Mitral Annular Calcification and Calcific Mitral Valve Disease. Journal of the American Society of Echocardiography 2022, 35, 925–932. [Google Scholar] [CrossRef]
- Wang, T.K.M.; Griffin, B.P.; Xu, B.; Rodriguez, L.L.; Popovic, Z.B.; Gillinov, M.A.; Pettersson, G.B.; Desai, M.Y. Relationships between Mitral Annular Calcification and Cardiovascular Events: A Meta-analysis. Echocardiography 2020, 37, 1723–1731. [Google Scholar] [CrossRef]
- Kohsaka, S.; Jin, Z.; Rundek, T.; Boden-Albala, B.; Homma, S.; Sacco, R.L.; Di Tullio, M.R. Impact of Mitral Annular Calcification on Cardiovascular Events in a Multiethnic Community. JACC Cardiovasc Imaging 2008, 1, 617–623. [Google Scholar] [CrossRef]
- Moradi, M.; Jahromi, A.S. Prognostic Value of Mitral Annular Calcification in Coronary Atherosclerotic Disease Assessed by Coronary Computed Tomographic Angiography. Journal of Research in Medical Sciences 2024, 29. [Google Scholar] [CrossRef] [PubMed]
- Babul Mia, M.; Rezaul Karim, M.; Hossain, N.; Jahurul Haque, M.; Ahmed Chowdhury, T.; Hoque, S.; History, A. MITRAL ANNULAR CALCIFICATION: A MARKER OF SEVERE CORONARY ARTERY DISEASE IN PATIENTS UNDER 60 YEARS OLD. Med. Res. Chronicles 9 2022. [Google Scholar] [CrossRef]
- Morariu, P.C.; Tanase, D.M.; Iov, D.E.; Sîrbu, O.; Oancea, A.F.; Mircea, C.G.; Chiriac, C.P.; Baroi, G.L.; Morariu, I.-D.; Dascălu, C.G.; et al. Mitral Annular Calcification and Thromboembolic Risk. Life 2023, 13, 1568. [Google Scholar] [CrossRef] [PubMed]
- Varol, E.; Aksoy, F.; Ozaydin, M.; Erdogan, D.; Dogan, A. Association between Neutrophil–Lymphocyte Ratio and Mitral Annular Calcification. Blood Coagulation & Fibrinolysis 2014, 25, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Kanjanauthai, S.; Nasir, K.; Katz, R.; Rivera, J.J.; Takasu, J.; Blumenthal, R.S.; Eng, J.; Budoff, M.J. Relationships of Mitral Annular Calcification to Cardiovascular Risk Factors: The Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 2010, 213, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Morariu, P.C.; Oancea, A.F.; Gosav, E.M.; Buliga-Finis, O.N.; Cuciureanu, M.; Scripcariu, D.-V.; Sirbu, O.; Godun, M.M.; Floria, D.-E.; Chiriac, P.C.; et al. Rethinking Mitral Annular Calcification and Its Clinical Significance: From Passive Process to Active Pathology. J Pers Med 2024, 14, 900. [Google Scholar] [CrossRef]
- Furman, M.I.; Gore, J.M.; Anderson, F.A.; Budaj, A.; Goodman, S.G.; Avezum, Á.; López-Sendón, J.; Klein, W.; Mukherjee, D.; Eagle, K.A.; et al. Elevated Leukocyte Count and Adverse Hospital Events in Patients with Acute Coronary Syndromes: Findings from the Global Registry of Acute Coronary Events (GRACE). Am Heart J 2004, 147, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Afari, M.E.; Bhat, T. Neutrophil to Lymphocyte Ratio (NLR) and Cardiovascular Diseases: An Update. Expert Rev Cardiovasc Ther 2016, 14, 573–577. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, L.; Zhou, T.; Yang, H.; Liu, T.; Hu, H. Association Between Inflammation Indices Derived From Complete Blood Count and Coronary Artery Calcification. J Inflamm Res 2025, Volume 18, 3807–3816. [Google Scholar] [CrossRef]
- Fu, T.; Deng, T. Associations between Systemic Inflammation Response Index and Abdominal Aortic Calcification: A Cross-Sectional Study. Sci Rep 2025, 15, 35777. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Huang, Z.; Wang, J.; Yue, S.; Hou, Y.; Ren, R.; Zhang, Y.; Cheng, Y.; Zhang, R.; Mu, Y. Predictive Value of System Immune-Inflammation Index for the Severity of Coronary Stenosis in Patients with Coronary Heart Disease and Diabetes Mellitus. Sci Rep 2024, 14, 31370. [Google Scholar] [CrossRef]
- Li, M.; Li, M.; Wang, Z.; Zhang, Y. The Combined Effect of the Systemic Immune-Inflammation Index and Aortic Valve Calcification on Major Adverse Cardiovascular Events in Patients with Coronary Heart Disease. J Inflamm Res 2024, Volume 17, 8375–8384. [Google Scholar] [CrossRef]
- Yayla, Ç.; Akboga, M.K.; Canpolat, U.; Gayretli Yayla, K.; Kuyumcu, M.S.; Bayraktar, F.; Suleymanoglu, M.; Aydogdu, S. The Association of the Platelet-to-Lymphocyte Ratio with Mitral Annular Calcification. Scandinavian Cardiovascular Journal 2015, 49, 351–356. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur Heart J 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Moreno, P.R.; Fuster, V. New Aspects in the Pathogenesis of Diabetic Atherothrombosis. J Am Coll Cardiol 2004, 44, 2293–2300. [Google Scholar] [CrossRef] [PubMed]
- Bessueille, L.; Magne, D. Inflammation: A Culprit for Vascular Calcification in Atherosclerosis and Diabetes. Cellular and Molecular Life Sciences 2015, 72, 2475–2489. [Google Scholar] [CrossRef] [PubMed]
- Donath, M.Y.; Böni-Schnetzler, M.; Ellingsgaard, H.; Halban, P.A.; Ehses, J.A. Cytokine Production by Islets in Health and Diabetes: Cellular Origin, Regulation and Function. Trends in Endocrinology & Metabolism 2010, 21, 261–267. [Google Scholar] [CrossRef]
- Shanahan, C.M.; Cary, N.R.B.; Salisbury, J.R.; Proudfoot, D.; Weissberg, P.L.; Edmonds, M.E. Medial Localization of Mineralization-Regulating Proteins in Association With Mönckeberg’s Sclerosis. Circulation 1999, 100, 2168–2176. [Google Scholar] [CrossRef] [PubMed]
- Grigorescu, E.-D.; Lăcătușu, C.-M.; Floria, M.; Cazac, G.-D.; Onofriescu, A.; Ceasovschih, A.; Crețu, I.; Mihai, B.-M.; Șorodoc, L. Association of Inflammatory and Metabolic Biomarkers with Mitral Annular Calcification in Type 2 Diabetes Patients. J Pers Med 2022, 12, 1484. [Google Scholar] [CrossRef] [PubMed]


| Parameter | MAC + (n = 134) | MAC - (n = 71) | Total (n = 205) | Statistical Test | p-value |
|---|---|---|---|---|---|
| Clinical and anthropometric characteristics | |||||
| Age (years) | 66.5 (56.0 – 73.0) | 58.0 (50.0 – 69.0) | 65.0 (54.0 – 72.0) | Mann-Whitney U = 3351.0 |
< 0.001* |
| Sex (female) | 90 (67.2%) | 38 (53.5%) | 128 (59.5%) | χ2 = 1.618 | 0.203 |
| Systolic BP (mmHg) | 149.1 ± 22.3 | 138.1 ± 17.8 | 145.3 ± 21.4 | t = 3.858 | < 0.001* |
| Arterial Hypertension | 129 (96.3%) | 49 (69.0%) | 178 (86.8%) | χ2 = 30.145 | < 0.001* |
| Waist circumference (cm) | 103.0 (92.0 – 114.8) | 97.0 (89.0-108.0) | 102.0 (92.0 – 112.0) | Mann-Whitney U = 3822.5 |
0.021* |
| BMI (kg/m2) | 30.7 ± 5.5 | 28.7 ± 5.3 | 30.0 ± 5.5 | t = 2.520 | 0.013* |
| Smoking status | 52 (38.8%) | 23 (32.4%) | 75 (36.6%) | χ2 = 0.822 | 0.365 |
| Cardiovascular and metabolic comorbidities | |||||
| Hepatic steatosis | 98 (66.4%) | 41 (57.7%) | 130 (63.4%) | χ2 = 1.504 | 0.220 |
| Prediabetes | 73 (54.5%) | 31 (43.7%) | 104 (50.7%) | χ2 = 11.244 | 0.004* |
| Type 2 Diabetes | 22 (16.4%) | 4 (5.6%) | 26 (12.7%) | χ2 = 11.244 | 0.004* |
| Heart failure | 122 (91%) | 38 (53.5%) | 172 (83.9%) | χ2 = 74.231 | < 0.001* |
| NYHA II-III | 115 (85.8%) | 38 (53.5%) | 153 (74.6%) | χ2 = 79.414 | < 0.001* |
| Coronary artery disease | 35 (26.1%) | 16 (22.5%) | 51 (24.9%) | χ2 = 0.319 | 0.572 |
| Atrial fibrillation | 32 (23.9%) | 10 (14.1%) | 42 (20.5%) | χ2 = 3.556 | 0.314 |
| Echocardiographic characteristics | |||||
| IVS (mm) | 11.0 (10.0 – 12.0) | 11.0 (9.0 – 12.0) | 11.0 (10.0 – 12.0) | Mann-Whitney U = 3977.5 |
0.049* |
| PWT (mm) | 11.0 (10.0 – 12.0) | 11.0 (9.0 – 12.0) | 11.0 (10.0 – 12.0) | Mann-Whitney U = 4190.5 |
0.150 |
| LVEDD (mm) | 41.0 (37.0 – 45.0) | 41.0 (36.0 – 46.0) | 41.0 (37.0 – 45.0) | Mann-Whitney U = 4553.0 |
0.613 |
| LVEDV (mL/m2) | 81.5 (69.8 – 97.0) | 76.0 (63.0 – 95.0) | 80.0 (67.5 – 96.5) | Mann-Whitney U = 4022.0 |
0.069+ |
| LVESV (mL/m2) | 35.0 (23.0 – 43.5) | 28.0 (23.0 – 38.0) | 32.0 (23.0 – 42.0) | Mann-Whitney U = 4009.0 |
0.064+ |
| LVEF (%) | 59.0 (54.0 – 65.0) | 60.0 (55.0 – 64.0) | 60.0 (55.0 – 65.0) | Mann-Whitney U = 4278.0 |
0.233 |
| LA volume (mL/m2) | 82.0 (65.8 – 101.3) | 70.0 (58.0 – 84.0) | 76.0 (62.0 – 97.5) | Mann-Whitney U = 3390.5 |
< 0.001* |
| RA diameter (mm) | 58.0 (44.0 – 70.0) | 50.0 (41.0 – 61.0) | 55.0 (42.0 – 67.0) | Mann-Whitney U = 3880.0 |
0.030* |
| RV basal diameter (mm) | 35.0 (32.0 – 38.3) | 33.0 (29.0 – 37.0) | 34.0 (32.0 – 38.0) | Mann-Whitney U = 3769.5 |
0.014* |
| Laboratory characteristics | |||||
| CRP (mg/dL) | 0.31 (0.13 – 0.56) | 0.18 (0.08 – 0.42) | 0.28 (0.12 – 0.5) |
Mann-Whitney
U = 3518.500 |
0.002* |
| Glucose (mg/dL) | 100.5 (90.75 – 113) | 97.0 (86.0 – 105.0) | 99.0 (88.0 – 110.0) | Mann-Whitney U = 4031.5 |
0.073+ |
| HbA1c (%) | 5.85 (5.60 – 6.10) | 5.60 (5.30 – 5.90) | 5.80 (5.40-6.00) | Mann-Whitney U = 3306.5 |
< 0.001* |
| LDL – cholesterol (mg/dL) | 123.51 ± 47.93 | 128.99 ± 43.95 | 125.41 ± 46.56 | t = -0.800 | 0.425 |
| HDL – cholesterol (mg/dL) | 45.0 (37.0 – 54.0) | 53.0 (42.0 – 61.0) | 47.0 (39.0 – 56.0) | Mann-Whitney U = 3390.5 |
<0.001* |
| Triglycerides (mg/dL) | 113.5 (85.0 – 159.3) | 81.0 (63.0 – 133.0) | 106.0 (75.0 – 146.0) | Mann-Whitney U = 3468.0 |
<0.001* |
| NT-proBNP (pg/mL) | 116.0 (61.51 – 353.25) | 85.0 (34.0 – 185.0) | 102.0 (50.4 – 290.5) | Mann-Whitney U = 3885.5 |
0.031* |
| eGFR (mL/min/1.73m2) | 86.7 (72.0-97.2) | 87.5 (73.3-101.4) | 87.4 (72.9-98.4) | Mann-Whitney U = 4354.5 |
0.319 |
| Hemoglobin (g/dL) | 14 (13.2 – 14.9) | 13.6 (13.2 – 14.3) | 13.9 (13.2 – 14.7) | Mann-Whitney U = 4241.500 |
0.202 |
| Leukocytes (x 103 /μL) | 6.8 (5.8 −8.2) | 6.8 (5.3 – 7.9) | 6.8 (5.7 – 8.1) |
Mann-Whitney
U = 4372.000 |
0.341 |
| Neutrophils (x 103 /μL) | 4.2 (3.4 – 5.6) | 4.1 (2.9 – 5) | 4.1 (3.3 – 5.4) |
Mann-Whitney
U = 4134.000 |
0.123 |
| Neutrophils (%) | 63.3 (56 – 67.5) | 60.2 (52.7 – 66.3) | 61.8 (55.1 – 66.7) |
Mann-Whitney
U = 4067.500 |
0.088+ |
| Monocytes (x 103 /μL) | 0.55 (0.43 – 0.69) | 0.51 (0.42 – 0.63) | 0.52 (0.43 – 0.67) |
Mann-Whitney
U = 4375.500 |
0.345 |
| Lymphocytes (x 103 /μL) | 1.74 (1.45– 2.17) | 1.84 (1.49 – 2.34) | 1.75 (1.46 – 2.21) |
Mann-Whitney
U = 4308.500 |
0.267 |
| Lymphocytes (%) | 25.9 (21.8– 31.9) | 29 (23.2 – 34.9) | 26.5 (22.3 – 33.4) |
Mann-Whitney
U = 4014.000 |
0.066+ |
| Platelets (x 103 /μL) | 236.8 ± 60.2 | 240.9 ± 61.0 | 238.2 ± 60.4 | t = -0.462 | 0.645 |
| Hematological inflammatory parameters | |||||
| NLR | 2.52 (1.77 – 3.07) | 1.99 (1.54 – 2.82) | 2.4 (1.67 – 2.95) |
Mann-Whitney
U = 3963.000 |
0.032* |
| NMR | 7.68 (6.32 – 9.55) | 7.35 (6.16 – 9.47) | 7.52 (6.32 – 9.54) |
Mann-Whitney
U = 4488.000 |
0.506 |
| LLR | 0.26 (0.21 – 0.32) | 0.29 (0.24 – 0.35) | 0.27 (0.23 – 0.33) |
Mann-Whitney
U = 3889.000 |
0.032* |
| PLR | 127.78 (103.79 – 166.15) | 130.32 (99.73 – 146.96) | 128.46 (102.85 – 159.96) |
Mann-Whitney
U = 4557.500 |
0.622 |
| SIRI | 1.27 (0.86 – 1.97) | 1.04 (0.76 – 1.44) | 1.19 (0.85 – 1.75) |
Mann-Whitney
U = 3922.000 |
0.039* |
| SII | 68.39 (52.44 – 92.11) | 66.21 (52.13 – 79.02) | 67.62 (52.41 – 85.83) |
Mann-Whitney
U = 4263.000 |
0.222 |
| Variable | CRP, ρ (p) | NLR, ρ (p) | LLR, ρ (p) | SIRI, ρ (p) |
|---|---|---|---|---|
| Age | 0.162 (0.020*) | 0.177 (0.011*) | -0.191 (0.006*) | 0.184 (0.008*) |
| BMI | 0.322 (<0.001*) | -0.008 (0.908) | 0.026 (0.706) | -0.054 (0.438) |
| Waist circumference | 0.297 (<0.001*) | 0.013 (0.849) | -0.003 (0.967) | -0.008 (0.914) |
| NT-proBNP | 0.260 (<0.001*) | 0.081 (0.247) | -0.110 (0.116) | 0.151 (0.031*) |
| eGFR | -0.102 (0.145) | -0.137 (0.050*) | 0.147 (0.036*) | -0.138 (0.048*) |
| Marker |
No dysglycemia M ± SD Median (IQR) |
Prediabetes M ± SD Median (IQR) |
Type 2 diabetes M ± SD Median (IQR) |
H (Kruskal-Wallis) | p-value |
| CRP | 0.374 ± 0.790 0.170 (0.090 ÷ 0.430) |
0.624 ± 1.248 0.320 (0.130 ÷ 0.517) |
0.475 ± 0.460 0.395 (0.187 ÷ 0.570) |
7.008 | 0.030* |
| NRL | 2.315 ± 1.141 2.055 (1.553 ÷ 2.691) |
2.580 ± 1.248 2.411 (1.737 ÷ 2.937) |
2.863 ± 1.132 2.998 (2.338 ÷ 3.456) |
7.329 | 0.026* |
| LLR | 0.293 ± 0.085 0.288 (0.240 ÷ 0.348) |
0.276 ± 0.084 0.266 (0.224 ÷ 0.327) |
0.251 ± 0.084 0.235 (0.200 ÷ 0.272) |
5.591 | 0.061 |
| SIRI | 1.223 ± 0.810 0.962 (0.759 ÷ 1.39) |
1.567 ± 1.117 1.211 (0.866 ÷ 1.982) |
1.804 ± 0.902 1.629 (1.199 ÷ 2.584) |
7.320 | 0.026* |
| Variable | Model 1: CRP B |
Model 1: CRP OR (95% CI), p |
Model 2: NRL B | Model 2: NLR OR (95% CI), p |
Model 3: LLR B | Model 3: LLR OR (95% CI), p |
Model 4: SIRI B | Model 4: SIRI OR (95% CI), p |
|---|---|---|---|---|---|---|---|---|
| Inflammatory Index | 1.162 | CRP 3.197 (0.835-12.240), p=0.090 |
0.171 | NLR 1.186 (0.900-1564), p=0.225 | -2.931 | LLR 0.053 (0.001-2.008), p=0.113 |
0.127 | SIRI 1.136 (0.812-1.589), p=0.458 |
| Age (per year) | -0.005 | 0.995 (0.956-1.036), p=0.807 | 0.055 | 1.056 (1.023-1.090), p=0.001* | 0.061 | 1.063 (1.031-1.096), p<0.001* | 0.056 | 1.057 (1.023-1.092), p=0.001* |
| BMI (per kg/m2) | -0.014 | 0.986 (0.851-1.142) p=0.851 | - | - | - | - | - | - |
| Waist circumference | -0.022 | 0.979 (0.936-1.023); p=0.337 | - | - | - | - | - | - |
| Prediabetes vs. none | 0.888 | 2.430 (1.036-5.698), p=0.041* | 1.284 | 3.610 (1.787-7.291), p<0.001* | - | - | 1.288 | 3.625 (1.791-7.336), p<0.001* |
| Type 2 diabetes vs none | 1.776 | 5.906 (1.520-22.937), p=0.010* | 1.818 | 6.160 (2.012-18.866), p=0.001* | - | - | 1.823 | 6.189 (2.023-18.935), p=0.001* |
| Heart failure (present vs absent) | 22.902 | 8.83x109 (-); p=0.997 | - | - | - | - | - | - |
| eGFR (per unit increase) | - | - | 0.028 | 1.029 (1.004-1.054), p=0.022* | 0.020 | 1.020 (0.997-1.043), p=0.083 | 0.027 | 1.027 (1.003-1.052), p=0.029* |
| NT-proBNP (per 1 pg/ml) | -0.001 | 0.999 (0.999-1.000) p=0.099 | - | - | - | - | 0.000 | 1.000 (0.999-1.001); p=0.637 |
| Constant | -19.201 | OR=0.000; p=0.998 | -6.412 | OR=0.002; p=0.001 | -3.983 | OR=0.019; p=0.025 | -6.045 | OR=0.002; p=0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
