Submitted:
19 January 2026
Posted:
21 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
Targeting IDH1/2
Targeting Menin
Revumenib
Ziftomenib
Enzomenib
Bleximenib
Targeting FLT3
Gilteritinib
Quizartinib
3. Methods
4. Conclusions
5. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 7+3 | Cytarabine plus anthracycline induction chemotherapy |
| α-KG | Alpha-ketoglutarate |
| ADMIRAL | Phase III trial of gilteritinib in relapsed/refractory AML |
| AGILE | Phase III trial of ivosidenib plus azacitidine |
| ALL | Acute lymphoblastic leukemia |
| ALT | Alanine aminotransferase |
| AML | Acute myeloid leukemia |
| APL | Acute promyelocytic leukemia |
| ATRA | All-trans retinoic acid |
| ATO | Arsenic trioxide |
| Aza | Azacitidine |
| BID | Twice daily |
| CI | Confidence interval |
| CR | Complete remission |
| CRc | Composite complete remission |
| CRh | Complete remission with partial hematologic recovery |
| CRi | Complete remission with incomplete hematologic recovery |
| CTCAE | Common Terminology Criteria for Adverse Events |
| Dec/Ced | Decitabine/cedazuridine |
| DLT | Dose-limiting toxicity |
| DS | Differentiation syndrome |
| EFS | Event-free survival |
| FDA | U.S. Food and Drug Administration |
| FLT3 | FMS-like tyrosine kinase 3 |
| HOX | Homeobox gene family |
| HR | Hazard ratio |
| IDH1/2 | Isocitrate dehydrogenase 1 / 2 |
| IPSS | International Prognostic Scoring System |
| ITD | Internal tandem duplication |
| KMT2A | Lysine methyltransferase 2A |
| KMT2Ar | KMT2A-rearranged |
| MEIS1 | Myeloid ecotropic viral integration site 1 |
| MEN1 | Menin gene |
| MDS | Myelodysplastic syndrome |
| MPN | Myeloproliferative neoplasm |
| MRD | Measurable residual disease |
| ND | Newly diagnosed |
| NGS | Next-generation sequencing |
| NPM1 | Nucleophosmin 1 |
| NPM1m | NPM1-mutated |
| ODAC | Oncologic Drugs Advisory Committee |
| ORR | Overall response rate |
| OS | Overall survival |
| PML-RARA | Promyelocytic leukemia–retinoic acid receptor alpha fusion |
| QTc | Corrected QT interval |
| R/R | Relapsed or refractory |
| RP2D | Recommended phase II dose |
| SANRA | Scale for the Assessment of Narrative Review Articles |
| STAT5A | Signal transducer and activator of transcription 5A |
| TEAE | Treatment-emergent adverse event |
| TKD | Tyrosine kinase domain |
| TRAEs | Treatment-related adverse events |
| Ven | Venetoclax |
References
- Hartmann, L.; Metzeler, K.H. Clonal hematopoiesis and preleukemia—Genetics, biology, and clinical implications. Genes, Chromosom. Cancer 2019, 58, 828–838. [Google Scholar] [CrossRef]
- Cai, S.F.; Levine, R.L. Genetic and epigenetic determinants of AML pathogenesis. Semin. Hematol. 2018, 56, 84–89. [Google Scholar] [CrossRef]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef]
- Meng-Er, H.; Yu-Chen, Y.; Shu-Rong, C.; Jin-Ren, C.; Jia-Xiang, L.; Lin, Z.; Long-Jun, G.; Zhen-Yi. [PubMed]
- Abdel-Aziz, A.K. Advances in acute myeloid leukemia differentiation therapy: A critical review. Biochem. Pharmacol. 2023, 215, 115709. [Google Scholar] [CrossRef]
- Osman, A.E.; Anderson, J.; Churpek, J.E.; Christ, T.N.; Curran, E.; Godley, L.A.; Liu, H.; Thirman, M.J.; Odenike, T.; Stock, W.; et al. Treatment of Acute Promyelocytic Leukemia in Adults. J. Oncol. Pr. 2018, 14, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Stubbins, R.J.; Karsan, A. Differentiation therapy for myeloid malignancies: beyond cytotoxicity. Blood Cancer J. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Johnson, D.E.; Redner, R.L. An ATRActive future for differentiation therapy in AML. Blood Rev. 2015, 29, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Küley-Bagheri, Y.; Kreuzer, K.-A.; Engert, A.; Skoetz, N. Effects of all-trans retinoic acid (ATRA) in addition to chemotherapy for adults with acute myeloid leukaemia (AML) (non-acute promyelocytic leukaemia (APL)). Cochrane Database Syst Rev 2015, 8, Cd011960. [Google Scholar] [CrossRef]
- Martelli, M.P.; Gionfriddo, I.; Mezzasoma, F.; Milano, F.; Pierangeli, S.; Mulas, F.; Pacini, R.; Tabarrini, A.; Pettirossi, V.; Rossi, R.; et al. Arsenic trioxide and all-trans retinoic acid target NPM1 mutant oncoprotein levels and induce apoptosis in NPM1-mutated AML cells. Blood 2015, 125, 3455–3465. [Google Scholar] [CrossRef]
- Heuser, M.; Argiropoulos, B.; Kuchenbauer, F.; Yung, E.; Piper, J.; Fung, S.; Schlenk, R.F.; Dohner, K.; Hinrichsen, T.; Rudolph, C.; et al. MN1 overexpression induces acute myeloid leukemia in mice and predicts ATRA resistance in patients with AML. Blood 2007, 110, 1639–1647. [Google Scholar] [CrossRef]
- Tallman, M.S.; Gilliland, D.G.; Rowe, J.M. Drug therapy for acute myeloid leukemia. Blood 2005, 106(4), 1154–63. [Google Scholar] [CrossRef]
- Estey, E.; Döhner, H. Acute myeloid leukaemia. Lancet 2006, 368(9550), 1894–907. [Google Scholar] [CrossRef] [PubMed]
- Testa, U.; Castelli, G.; Pelosi, E. Recent Developments in Differentiation Therapy of Acute Myeloid Leukemia. Cancers 2025, 17, 1141. [Google Scholar] [CrossRef]
- Hughes, P.J.; Marcinkowska, E.; Gocek, E.; Studzinski, G.P.; Brown, G. Vitamin D3-driven signals for myeloid cell differentiation—Implications for differentiation therapy. Leuk. Res. 2010, 34, 553–565. [Google Scholar] [CrossRef]
- Kwon, M.C.; Thuring, J.W.; Querolle, O.; Dai, X.; Verhulst, T.; Pande, V.; Marien, A.; Goffin, D.; Wenge, D.V.; Yue, H.; et al. Preclinical efficacy of the potent, selective menin-KMT2A inhibitor JNJ-75276617 (bleximenib) in KMT2A- and NPM1-altered leukemias. Blood 2024, 144, 1206–1220. [Google Scholar] [CrossRef]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA—a scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 26, 5. [Google Scholar] [CrossRef]
- Norsworthy, K.J.; Mulkey, F.; Scott, E.C.; Ward, A.F.; Przepiorka, D.; Charlab, R.; Dorff, S.E.; Deisseroth, A.; Kazandjian, D.; Sridhara, R.; et al. Differentiation Syndrome with Ivosidenib and Enasidenib Treatment in Patients with Relapsed or Refractory IDH-Mutated AML: A U.S. Food and Drug Administration Systematic Analysis. Clin. Cancer Res. 2020, 26, 4280–4288. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Stein, E.M.; de Botton, S.; Roboz, G.J.; Altman, J.K.; Mims, A.S.; Swords, R.; Collins, R.H.; Mannis, G.N.; Pollyea, D.A.; et al. Durable Remissions with Ivosidenib in IDH1 -Mutated Relapsed or Refractory AML. New Engl. J. Med. 2018, 378, 2386–2398. [Google Scholar] [CrossRef] [PubMed]
- Montesinos, P.; Bergua, J.M.; Vellenga, E.; Rayón, C.; Parody, R.; De La Serna, J.; León, A.; Esteve, J.; Milone, G.; Debén, G.; et al. Differentiation syndrome in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline chemotherapy: Characteristics, outcome, and prognostic factors. Blood 2009, 113, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Montesinos, P.; Recher, C.; Vives, S.; Zarzycka, E.; Wang, J.; Bertani, G.; Heuser, M.; Calado, R.T.; Schuh, A.C.; Yeh, S.-P.; et al. Ivosidenib and Azacitidine in IDH1 -Mutated Acute Myeloid Leukemia. New Engl. J. Med. 2022, 386, 1519–1531. [Google Scholar] [CrossRef]
- Lachowiez, C.A.; Loghavi, S.; Zeng, Z.; Tanaka, T.; Kim, Y.J.; Uryu, H.; Turkalj, S.; Jakobsen, N.A.; Luskin, M.R.; Duose, D.Y.; et al. A Phase Ib/II Study of Ivosidenib with Venetoclax ± Azacitidine in IDH1 -Mutated Myeloid Malignancies. Blood Cancer Discov. 2023, 4, 276–293. [Google Scholar] [CrossRef]
- Marvin-Peek, J.; Garcia, J.S.; Borthakur, G.; Garcia-Manero, G.; Short, N.J.; Kadia, T.M.; Loghavi, S.; Masarova, L.; Daver, N.; Maiti, A.; et al. A Phase Ib/II Study of Ivosidenib with Venetoclax ± Azacitidine in IDH1-Mutated Hematologic Malignancies: A 2024 Update. Blood 2024, 144, 219–219. [Google Scholar] [CrossRef]
- Stein, E.M.; Dinardo, C.D.; Pollyea, D.A.; Fathi, A.T.; Roboz, G.J.; Altman, J.K.; Stone, R.M.; DeAngelo, D.J.; Levine, R.L.; Flinn, I.W.; et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 2018, 130, 722–731. [Google Scholar] [CrossRef]
- Pollyea, D.A.; Tallman, M.S.; de Botton, S.; Kantarjian, H.M.; Collins, R.; Stein, A.S.; Frattini, M.G.; Xu, Q.; Tosolini, A.; See, W.L.; et al. Enasidenib, an inhibitor of mutant IDH2 proteins, induces durable remissions in older patients with newly diagnosed acute myeloid leukemia. Leukemia 2019, 33, 2575–2584. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Schuh, A.C.; Stein, E.M.; Montesinos, P.; Wei, A.H.; de Botton, S.; Zeidan, A.M.; Fathi, A.T.; Kantarjian, H.M.; Bennett, J.M.; et al. Enasidenib plus azacitidine versus azacitidine alone in patients with newly diagnosed, mutant-IDH2 acute myeloid leukaemia (AG221-AML-005): a single-arm, phase 1b and randomised, phase 2 trial. Lancet Oncol. 2021, 22, 1597–1608. [Google Scholar] [CrossRef] [PubMed]
- Woods, A.C.; Norsworthy, K.J.; Choe, M.; Gehrke, B.J.; Chen, H.; Vallejo, J.; Pan, L.; Jiang, X.; Li, H.; Kraft, J.; et al. FDA Approval Summary: Olutasidenib for Adult Patients with Relapsed or Refractory Acute Myeloid Leukemia with an Isocitrate Dehydrogenase 1 Mutation. Clin. Cancer Res. 2024, 31, 12–17. [Google Scholar] [CrossRef] [PubMed]
- de Botton, S. Olutasidenib (FT-2102) induces durable complete remissions in patients with relapsed or refractory IDH1-mutated AML. Blood Adv 2023, 7, 3117–3127. [Google Scholar] [CrossRef]
- Cortes, J.; Curti, A.; Fenaux, P.; Jonas, B.A.; Krauter, J.; Montesinos, P.; Récher, C.; Taussig, D.C.; Wang, E.S.; Watts, J.; et al. Olutasidenib for mutated IDH1 acute myeloid leukemia: final five-year results from the phase 2 pivotal cohort. J. Hematol. Oncol. 2025, 18, 102. [Google Scholar] [CrossRef]
- Cortes, J.; Jonas, B.A.; Schiller, G.; Mims, A.; Roboz, G.J.; Wei, A.H.; Montesinos, P.; Ferrell, P.B.; Yee, K.W.; Fenaux, P.; et al. Olutasidenib in post-venetoclax patients with mutant isocitrate dehydrogenase 1 (m IDH1 ) acute myeloid leukemia (AML). Leuk. Lymphoma 2024, 65, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.E.; Yang, J.; Roboz, G.J.; Dinner, S.N.; Wang, E.S.; Wei, A.H.; Tian, H.; di Trapani, F.; Baer, M.R.; Donnellan, W.; et al. Olutasidenib alone or combined with azacitidine in patients with mutant IDH1 myelodysplastic syndrome. Blood Adv. 2025, 9, 5293–5305. [Google Scholar] [CrossRef] [PubMed]
- Fathi, A.T. Differentiation Syndrome Associated With Enasidenib, a Selective Inhibitor of Mutant Isocitrate Dehydrogenase 2: Analysis of a Phase 1/2 Study. JAMA Oncology 2018, 4, 1106–1110. [Google Scholar] [CrossRef]
- Krivtsov, A.V.; Evans, K.; Gadrey, J.Y.; Eschle, B.K.; Hatton, C.; Uckelmann, H.J.; Ross, K.N.; Perner, F.; Olsen, S.N.; Pritchard, T.; et al. A Menin-MLL Inhibitor Induces Specific Chromatin Changes and Eradicates Disease in Models of MLL-Rearranged Leukemia. Cancer Cell 2019, 36, 660–673.e11. [Google Scholar] [CrossRef] [PubMed]
- Prata, P.H.; Bally, C.; Prebet, T.; Recher, C.; Venton, G.; Thomas, X.; Raffoux, E.; Pigneux, A.; Cluzeau, T.; Desoutter, J.; et al. NPM1 mutation is not associated with prolonged complete remission in acute myeloid leukemia patients treated with hypomethylating agents. Haematologica 2018, 103, e455–e457. [Google Scholar] [CrossRef]
- Arellano, M.L.; Thirman, M.J.; DiPersio, J.F.; Heiblig, M.; Stein, E.M.; Schuh, A.C.; Žučenka, A.; de Botton, S.; Grove, C.S.; Mannis, G.N.; et al. Menin inhibition with revumenib for NPM1-mutated relapsed or refractory acute myeloid leukemia: the AUGMENT-101 study. Blood 2025, 146, 1065–1077. [Google Scholar] [CrossRef]
- Issa, G.C.; Aldoss, I.; Thirman, M.J.; DiPersio, J.; Arellano, M.; Blachly, J.S.; Mannis, G.N.; Perl, A.; Dickens, D.S.; McMahon, C.M.; et al. Menin Inhibition With Revumenib for KMT2A -Rearranged Relapsed or Refractory Acute Leukemia (AUGMENT-101). J. Clin. Oncol. 2025, 43, 75–84. [Google Scholar] [CrossRef]
- Jen, W.-Y.; DiNardo, C.; Short, N.; Farhat, A.; El Hajjar, G.; Zhang, B.; Duose, D.; Daver, N.; Kadia, T.; Cuglievan, B.; et al. Phase II Study of the all-oral combination of revumenib (SNDX-5613) with decitabine/cedazuridine (ASTX727) and venetoclax (SAVE) in newly diagnosed AML. Blood 2025, 146, 47–47. [Google Scholar] [CrossRef]
- Zeidan, A.M.; Wang, E.S.; Issa, G.C.; Erba, H.; Altman, J.K.; Balasubramanian, S.K.; Strickland, S.A.; Roboz, G.J.; Schiller, G.J.; McMahon, C.M.; et al. Ziftomenib Combined with Intensive Induction (7+3) in Newly Diagnosed NPM1-m or KMT2A-r Acute Myeloid Leukemia: Interim Phase 1a Results from KOMET-007. Blood 2024, 144, 214–214. [Google Scholar] [CrossRef]
- Roboz, G.; Wang, E.; Fathi, A.; Erba, H.; Pratz, K.; Murthy, G.S.G.; Alsfeld, L.; Blachly, J.; Naqvi, K.; Issa, G.; et al. Ziftomenib in combination with venetoclax and azacitidine in newly diagnosed NPM1-m acute myeloid leukemia: Phase 1b results from KOMET-007. Blood 2025, 146, 766–766. [Google Scholar] [CrossRef]
- Issa, G.; Fathi, A.; Zeidan, A.; Erba, H.; Roboz, G.; Altman, J.; Pratz, K.; Juckett, M.; Lin, T.; Balasubramanian, S.K.; et al. Ziftomenib in combination with venetoclax and azacitidine in relapsed/refractory NPM1-m or KMT2A-r acute myeloid leukemia: Updated phase 1a/b safety and clinical activity results from KOMET-007. Blood 2025, 146, 764–764. [Google Scholar] [CrossRef]
- Daver, N.; Zeidner, J.; Watts, J.; Yuda, J.; Levis, M.; Montesinos, P.; Papayannidis, C.; Fukushima, K.; Shima, T.; Raffoux, E.; et al. Monotherapy update from Phase 1 portion in Phase1/2 trial of the menin-MLL inhibitor enzomenib (DSP-5336) in patients with relapsed or refractory acute leukemia. Blood 2025, 146, 763–763. [Google Scholar] [CrossRef]
- Watts, J.; Borate, U.; Levis, M.; Abaza, Y.; Wang, E.; Zeidner, J.; Cai, H.; Xu, B.; Robson, P.; Watanabe, A.; et al. Preliminary data from the ongoing Phase 1 study of the menin-MLL inhibitor enzomenib (DSP-5336) in combination with venetoclax and azacitidine in patients with relapsed or refractory Acute Myeloid Leukemia. Blood 2025, 146, 765–765. [Google Scholar] [CrossRef]
- Fathi, A.T.; Stein, E.M.; DiNardo, C.D.; Levis, M.J.; Montesinos, P.; de Botton, S. Differentiation syndrome with lower-intensity treatments for acute myeloid leukemia. Am. J. Hematol. 2021, 96, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.; Marcucci, G.; et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef]
- Mori, M.; Kaneko, N.; Ueno, Y.; Yamada, M.; Tanaka, R.; Saito, R.; Shimada, I.; Mori, K.; Kuromitsu, S. Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia. Investig. New Drugs 2017, 35, 556–565. [Google Scholar] [CrossRef]
- Numan, Y.; Rahman, Z.A.; Grenet, J.; Boisclair, S.; Bewersdorf, J.P.; Collins, C.; Barth, D.; Fraga, M.; Bixby, D.L.; Zeidan, A.M.; et al. Gilteritinib clinical activity in relapsed/refractory FLT3 mutated acute myeloid leukemia previously treated with FLT3 inhibitors. Am. J. Hematol. 2022, 97, 322–328. [Google Scholar] [CrossRef]
- McMahon, C.M.; Canaani, J.; Rea, B.; Sargent, R.L.; Qualtieri, J.N.; Watt, C.D.; Morrissette, J.J.D.; Carroll, M.; Perl, A.E. Gilteritinib induces differentiation in relapsed and refractory FLT3-mutated acute myeloid leukemia. Blood Adv. 2019, 3, 1581–1585. [Google Scholar] [CrossRef]
- Sexauer, A.; Perl, A.; Yang, X.; Borowitz, M.; Gocke, C.; Rajkhowa, T.; Thiede, C.; Frattini, M.; Nybakken, G.E.; Pratz, K.; et al. Terminal myeloid differentiation in vivo is induced by FLT3 inhibition in FLT3/ITD AML. Blood 2012, 120, 4205–4214. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, R.; Ma, H. Sweet syndrome induced by FLT3 inhibitors: case report and literature review. Hematology 2024, 29, 2337230. [Google Scholar] [CrossRef]
- Rasouli, M.; Blair, H.; Troester, S.; Szoltysek, K.; Cameron, R.; Ashtiani, M.; Krippner-Heidenreich, A.; Grebien, F.; McGeehan, G.; Zwaan, C.M.; et al. The MLL–Menin Interaction is a Therapeutic Vulnerability in NUP98-rearranged AML. HemaSphere 2023, 7, e935. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Marvin-Peek, J.; Loghavi, S.; Takahashi, K.; Issa, G.C.; Jen, W.-Y.; Daver, N.G.; Reville, P.K.; Short, N.J.; Sasaki, K.; et al. Outcomes of Frontline Triplet Regimens With a Hypomethylating Agent, Venetoclax, and Isocitrate Dehydrogenase Inhibitor for Intensive Chemotherapy–Ineligible Patients With Isocitrate Dehydrogenase–Mutated AML. J. Clin. Oncol. 2025, 43, 2692–2699. [Google Scholar] [CrossRef] [PubMed]
| Medication | Trial / ID (Ref) | Line of Therapy | Response Rate (ORR / CR / CRh) | Grade ≥ 3 Complications | Differentiation Syndrome (DS) |
| Ivosidenib | Phase 1 Expansion NCT02093559 (AG120-C-001) |
R/R AML | ORR: 41.6% CR/CRh: 30.4% CR: 21.6% |
QT Prolongation: 7.8% Leukocytosis: 1.7% |
10.6% (Any grade) 3.9% (Grade ≥ 3) FDA review: 19% |
| Ivosidenib + Azacitidine | Phase 3 AGILE | Newly Diagnosed (Unfit) | ORR: 62.5% CR: 47.2% |
Neutropenia: 28% Febrile Neutropenia: 28% |
14% (Any grade) No Grade ≥ 4 |
| Ivosidenib + Aza + Venetoclax | Phase 1b/2 Triplet (NCT03471260) | ND AML, R/R AML, or MDS/MPN | ORR: 94% CRc: 93% |
Febrile Neutropenia: 28% Infection: 24% |
11% (Any grade) No G4/5 reported |
| Enasidenib | Phase 1/2 Study NCT01915498 (AG221-C-001) (24, 25) |
R/R AML | ORR: 40.3% CR: 19.3% |
Hyperbilirubinemia: 12% Thrombocytopenia: 6% |
12% (Any grade) 7% Grade ≥3 |
| Enasidenib + Azacitidine | Phase 1b/2 Study NCT02677922 (Phase 2) |
ND AML (Unfit) | ORR: 74% CR: 54% |
Neutropenia: 37% Thrombocytopenia: 37% |
18% (Any grade) 8% Grade ≥3 |
| Olutasidenib | Phase 2 Pivotal 2102-HEM-101 (NCT02719574) |
R/R AML | ORR: 48% CR/CRh: 35% |
Transaminitis: 13% Febrile Neutropenia: 8% |
14% (Any grade) 9% (Grade ≥ 3) 1 Fatal case |
| Olutasidenib + Azacitidine | NCT02719574 (Pivotal) | R/R AML | ORR: 59% CR/CRh: 27% |
Thrombocytopenia: 37% Neutropenia: 24% |
9% (Any grade) 5% (Grade 3) |
| Medication | Trial / ID | Line of Therapy | Response Rate (ORR / CR / CRh) | Grade ≥ 3 Complications | Differentiation Syndrome (DS) |
| Revumenib | AUGMENT-101 | R/R AML (KMT2Ar/NPM1m) | KMT2Ar: ORR 64% NPM1m: ORR 47% |
QTc Prolongation: 16% Febrile Neutropenia: 14% |
16% (Any grade) All G2–3 |
| Revumenib + Aza + Ven | Beat AML (NCT03013998) | ND AML (Older adults) | CR/CRh 81.4% ORR: 88.4% |
QTc Prolongation: 12% (G3) Universal MRD- in responders |
19% (Any grade) 5% (Grade 3) |
| Revumenib + Dec/Ced + Ven | SAVE Study | ND AML (NPM1m/KMT2Ar) | CR: 88% MRD- Rate: 100% |
Infection: 53% Febrile Neutropenia: 37% |
24% (Any grade) 12% Grade 3 |
| Ziftomenib | KOMET-001 | R/R NPM1m AML | CR/CRh: 22% mDOR: 4.6 months |
Febrile Neutropenia: 26% Anemia/Thrombocytopenia: 20% |
25% (Any grade) 15% Grade 3 |
| Ziftomenib + 7+3 | KOMET-007 (39) | ND AML (KMT2Ar/NPM1m) | NPM1m: CR 100% KMT2Ar: CR 83% |
Febrile Neutropenia: 15% Thrombocytopenia: 15% |
2% (Any grade) 1 Case G3 reported |
| Ziftomenib + Aza + Ven | KOMET-007 (40) | ND NPM1m AML | CRc: 84% MRD- Rate: 54% |
QTc Prolongation: 3% (G3) | 3% (Grade 2) |
| Ziftomenib + Aza + Ven | KOMET-007 (41) | R/R AML (KMT2Ar/NPM1m) | NPM1m: ORR 65% KMT2Ar: ORR 33% |
Thrombocytopenia: 31% Anemia: 26% |
1% (Grade 3) |
| Enzomenib | Phase 1/2 (Daver 2025) | R/R Acute Leukemia | KMT2Ar: ORR 72.7% NPM1m: ORR 47% |
No ≥G3 QTc prolongation Sepsis: 25% |
12.9% (Any grade) 7.7% Grade 3/4 |
| Enzomenib + Aza + Ven | Phase 1 (Watts 2025) | R/R AML | CRc: 56% MRD- Rate: 83% |
Thrombocytopenia: 44.4% Leukopenia: 38.9% |
1 Case (Grade 2) |
| Bleximenib + Ven (+/- Aza) | ALE1002 (4.1, 4.4) | R/R AML (KMT2Ar/NPM1m) | ORR: 69%–79% CRc: 38.5% |
Febrile Neutropenia: 37% Anemia: 46.7% |
6% (Any grade) G5 reported at 50mg |
| Bleximenib + 7+3 Chemo | ALE1002 (4.2) | ND AML (KMT2Ar/NPM1m) | ORR: 95.8% CR: 87.5% |
Thrombocytopenia: 79.5% Neutropenia: 72.7% |
Low (Safety mitigation in place) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
