Submitted:
16 January 2026
Posted:
19 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of HPSL Nano-Gel
2.3. Entrapment Efficiency
2.4. Assessing Hydrodynamic Dimension and Zeta Potential: A Measurement investigation
2.5. Visual Examination Using Scanning Electron Microscopy (SEM)
2.6. Release kinetics of Silymarin
2.7. Animals
2.8. Behavioral Studies
2.9. Biochemical Studies
2.10. Histopathological Studies
2.11. Statistical Analysis
3. Results
3.1. Characterization and Optimization of HPSL: A Physical Perspective
3.2. Scanning Electron Microscopy
3.3. Silymarin Release Kinetics
3.4. Findings of Behavioral Studies
3.5. Findings of Biochemical Studies
3.6. Results of Histopathologiocal studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dael, A.W.-V.; Bunn, F.; Lynch, J.; Pivodic, L.; Block, L.V.D.; Goodman, C. Advance care planning for people living with dementia: An umbrella review of effectiveness and experiences. Int. J. Nurs. Stud. 2020, 107, 103576. [Google Scholar] [CrossRef]
- Magdy, R.; Hussein, M. Cognitive, Psychiatric, and Motor Symptoms–Based Algorithmic Approach to Differentiate Among Various Types of Dementia Syndromes. J. Nerv. Ment. Dis. 2022, 210, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Elahi, F.M.; Miller, B.L. A clinicopathological approach to the diagnosis of dementia. Nat. Rev. Neurol. 2017, 13, 457–476. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Mesulam, M.-M.; Cuello, A.C.; Khachaturian, A.S.; Vergallo, A.; Farlow, M.; Snyder, P.; Giacobini, E.; Khachaturian, Z. Cholinergic System Working Group; f.t.A.P.M. Initiative, Revisiting the cholinergic hypothesis in Alzheimer’s disease: emerging evidence from translational and clinical research. The journal of prevention of Alzheimer's disease 2019, 6, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Pluvinage, J.V.; Wyss-Coray, T. Systemic factors as mediators of brain homeostasis, ageing and neurodegeneration. Nat. Rev. Neurosci. 2020, 21, 93–102. [Google Scholar] [CrossRef]
- Niotis, K.; Akiyoshi, K.; Carlton, C.; Isaacson, R. Dementia Prevention in Clinical Practice. Semin. Neurol. 2022, 42, 525–548. [Google Scholar] [CrossRef]
- Guzzon, A.; Rebba, V.; Paccagnella, O.; Rigon, M.; Boniolo, G. The value of supportive care: A systematic review of cost-effectiveness of non-pharmacological interventions for dementia. PLOS ONE 2023, 18, e0285305. [Google Scholar] [CrossRef]
- Ballard, C.; Corbett, A.; Orrell, M.; Williams, G.; Moniz-Cook, E.; Romeo, R.; Woods, B.; Garrod, L.; Testad, I.; Woodward-Carlton, B.; et al. Impact of person-centred care training and person-centred activities on quality of life, agitation, and antipsychotic use in people with dementia living in nursing homes: A cluster-randomised controlled trial. PLOS Med. 2018, 15, e1002500. [Google Scholar] [CrossRef]
- Zerr, I.; Hermann, P. Diagnostic challenges in rapidly progressive dementia. Expert Rev. Neurother. 2018, 18, 761–772. [Google Scholar] [CrossRef]
- Chinner, A.; Blane, J.; Lancaster, C.; Hinds, C.; Koychev, I. Digital technologies for the assessment of cognition: a clinical review. Évid. Based Ment. Heal. 2018, 21, 67–71. [Google Scholar] [CrossRef]
- Marucci, G.; Buccioni, M.; Dal Ben, D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease. Neuropharmacology 2021, 190, 108352. [Google Scholar] [CrossRef] [PubMed]
- Czarnecka, K.; Chuchmacz, J.; Wójtowicz, P.; Szymański, P. Memantine in neurological disorders – schizophrenia and depression. J. Mol. Med. 2021, 99, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Fallah, M.; Davoodvandi, A.; Nikmanzar, S.; Aghili, S.; Mirazimi, S.M.A.; Aschner, M.; Rashidian, A.; Hamblin, M.R.; Chamanara, M.; Naghsh, N.; et al. Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. Biomed. Pharmacother. 2021, 142, 112024. [Google Scholar] [CrossRef] [PubMed]
- Tighe, S.P.; Akhtar, D.; Iqbal, U.; Ahmed, A. Chronic Liver Disease and Silymarin: A Biochemical and Clinical Review. J. Clin. Transl. Hepatol. 2020, 8, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, V.; Delghandi, P.S.; Moallem, S.A.; Karimi, G. Safety and toxicity of silymarin, the major constituent of milk thistle extract: An updated review. Phytotherapy Res. 2019, 33, 1627–1638. [Google Scholar] [CrossRef]
- El-Marasy, S.A.A.; Abd-Elsalam, R.M.; Ahmed-Farid, O.A. Ameliorative Effect of Silymarin on Scopolamine-induced Dementia in Rats. Open Access Maced. J. Med Sci. 2018, 6, 1215–1224. [Google Scholar] [CrossRef]
- Choi, H.-G.; Yong, C.S.; Yang, K.Y.; Hwang, D.H.; Kim, D.-W.; Bae, O.-N.; Kim, J.O.; Shin, Y.-J.; Yousaf, A.M.; Kim, Y.-I. Silymarin-loaded solid nanoparticles provide excellent hepatic protection: physicochemical characterization and in vivo evaluation. Int. J. Nanomed. 2013, 8, 3333–3343. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Negut, I.; Grumezescu, V.; Grumezescu, A.M.; Teleanu, R.I. Nanomaterials for Drug Delivery to the Central Nervous System. Nanomaterials 2019, 9, 371. [Google Scholar] [CrossRef]
- Ulbrich, K.; Hekmatara, T.; Herbert, E.; Kreuter, J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur. J. Pharm. Biopharm. 2009, 71, 251–256. [Google Scholar] [CrossRef]
- Thomsen, L.B.; Lichota, J.; Kim, K.S.; Moos, T. Gene delivery by pullulan derivatives in brain capillary endothelial cells for protein secretion. J. Control. Release 2011, 151, 45–50. [Google Scholar] [CrossRef]
- Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 1965, 13, 238–252, IN26–IN27. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, N.; Jin, X.; Deng, R.; Nie, S.; Sun, L.; Wu, Q.; Wei, Y.; Gong, C. Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials 2014, 35, 3903–3917. [Google Scholar] [CrossRef] [PubMed]
- Pushpalatha, R.; Selvamuthukumar, S.; Kilimozhi, D. Cross-linked, cyclodextrin-based nanosponges for curcumin delivery - Physicochemical characterization, drug release, stability and cytotoxicity. J. Drug Deliv. Sci. Technol. 2018, 45, 45–53. [Google Scholar] [CrossRef]
- Varan, C.; Anceschi, A.; Sevli, S.; Bruni, N.; Giraudo, L.; Bilgiç, E.; Korkusuz, P.; İsKit, A.B.; Trotta, F.; Bilensoy, E. Preparation and characterization of cyclodextrin nanosponges for organic toxic molecule removal. Int. J. Pharm. 2020, 585, 119485. [Google Scholar] [CrossRef]
- Dinari, A.; Farsani, S.S.M.; Mohammadi, S.; Najafi, F.; Abdollahi, M. Facile method for morphological characterization at nano scale. Iranian Journal of Biotechnology 2020, 18(3), e2645. [Google Scholar]
- Shah, H.S.; Usman, F.; Ashfaq–Khan, M.; Khalil, R.; Ul-Haq, Z.; Mushtaq, A.; Qaiser, R.; Iqbal, J. Preparation and characterization of anticancer niosomal withaferin–A formulation for improved delivery to cancer cells: In vitro, in vivo, and in silico evaluation. J. Drug Deliv. Sci. Technol. 2020, 59. [Google Scholar] [CrossRef]
- Mushtaq, A.; Anwar, R.; Gohar, U.F.; Ahmad, M.; (Vlaic), R.A.M.; Mureşan, C.C.; Irimie, M.; Bobescu, E. Biomolecular Evaluation of Lavandula stoechas L. for Nootropic Activity. Plants 2021, 10, 1259. [Google Scholar] [CrossRef]
- Mushtaq, A.; Anwar, R.; Ahmad, M. Lavandula stoechas (L) a Very Potent Antioxidant Attenuates Dementia in Scopolamine Induced Memory Deficit Mice. Front. Pharmacol. 2018, 9, 1375. [Google Scholar] [CrossRef]
- Mushtaq, A.; Habib, F.; Manea, R.; Anwar, R.; Gohar, U.F.; Zia-Ul-Haq, M.; Ahmad, M.; Gavris, C.M.; Chicea, L. Biomolecular Screening of Pimpinella anisum L. for Antioxidant and Anticholinesterase Activity in Mice Brain. Molecules 2023, 28, 2217. [Google Scholar] [CrossRef]
- Ren, D.; Zhao, F.; Liu, C.; Wang, J.; Guo, Y.; Liu, J.; Min, W. Antioxidant hydrolyzed peptides from Manchurian walnut (Juglans mandshurica Maxim.) attenuate scopolamine-induced memory impairment in mice. J. Sci. Food Agric. 2018, 98, 5142–5152. [Google Scholar] [CrossRef]
- Knodell, R.G.; Ishak, K.G.; Black, W.C.; Chen, T.S.; Craig, R.; Kaplowitz, N.; Kiernan, T.W.; Wollman, J. Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis†. Hepatology 1981, 1, 431–435. [Google Scholar] [CrossRef]
- Jia, L.; Du, Y.; Chu, L.; Zhang, Z.; Li, F.; Lyu, D.; Zhu, M.; Jiao, H.; Song, Y.; Shi, Y.; et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. Lancet Public Heal. 2020, 5, e661–e671. [Google Scholar] [CrossRef]
- Wadhwa, K.; Pahwa, R.; Kumar, M.; Kumar, S.; Sharma, P.C.; Singh, G.; Verma, R.; Mittal, V.; Singh, I.; Kaushik, D.; et al. Mechanistic Insights into the Pharmacological Significance of Silymarin. Molecules 2022, 27, 5327. [Google Scholar] [CrossRef]
- Akiyama, E.; Morimoto, N.; Kujawa, P.; Ozawa, Y.; Winnik, F.M.; Akiyoshi, K. Self-Assembled Nanogels of Cholesteryl-Modified Polysaccharides: Effect of the Polysaccharide Structure on Their Association Characteristics in the Dilute and Semidilute Regimes. Biomacromolecules 2007, 8, 2366–2373. [Google Scholar] [CrossRef] [PubMed]
- Soni, K.S.; Desale, S.S.; Bronich, T.K. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J. Control. Release 2016, 240, 109–126. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Kiick, K.L. Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomater. 2014, 10, 1588–1600. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.S.; Kaur, N.; Kennedy, J.F. Pullulan and pullulan derivatives as promising biomolecules for drug and gene targeting. Carbohydr. Polym. 2015, 123, 190–207. [Google Scholar] [CrossRef]
- Raemdonck, K.; Demeester, J.; De Smedt, S. Advanced nanogel engineering for drug delivery. Soft Matter 2008, 5, 707–715. [Google Scholar] [CrossRef]
- Vrignaud, S.; Benoit, J.-P.; Saulnier, P. Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials 2011, 32, 8593–8604. [Google Scholar] [CrossRef]
- Karakoti, A.S.; Hench, L.L.; Seal, S. The potential toxicity of nanomaterials—The role of surfaces. JOM 2006, 58, 77–82. [Google Scholar] [CrossRef]
- Mano, J.F.; Silva, G.A.; Azevedo, H.S.; Malafaya, P.B.; Sousa, R.A.; Silva, S.S.; Boesel, L.F.; Oliveira, J.M.; Santos, T.C.; Marques, A.P.; et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: Present status and some moving trends. J. R. Soc. Interface 2007, 4, 999–1030. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Morgulchik, N.; Kamaly, N. Meta-analysis of In Vitro Drug-Release Parameters Reveals Predictable and Robust Kinetics for Redox-Responsive Drug-Conjugated Therapeutic Nanogels. ACS Appl. Nano Mater. 2021, 4, 4256–4268. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, H.; Li, L.; Zhou, X.; Li, J.; Kan, C. Preparation and properties of lambda-cyhalothrin/polyurethane drug-loaded nanoemulsions. RSC Adv. 2017, 7, 52684–52693. [Google Scholar] [CrossRef]
- Bárez-López, S.; Montero-Pedrazuela, A.; Bosch-García, D.; Venero, C.; Guadaño-Ferraz, A. Increased anxiety and fear memory in adult mice lacking type 2 deiodinase. Psychoneuroendocrinology 2017, 84, 51–60. [Google Scholar] [CrossRef]
- Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef]
- Bin Yoon, W.; Choi, H.J.; Kim, J.E.; Park, J.W.; Kang, M.J.; Bae, S.J.; Lee, Y.J.; Choi, Y.S.; Kim, K.S.; Jung, Y.-S.; et al. Comparison of scopolamine-induced cognitive impairment responses in three different ICR stocks. Lab. Anim. Res. 2018, 34, 317–328. [Google Scholar] [CrossRef]
- Papas, M.; Catalan, J.; Barranco, I.; Arroyo, L.; Bassols, A.; Yeste, M.; Miró, J. Total and specific activities of superoxide dismutase (SOD) in seminal plasma are related with the cryotolerance of jackass spermatozoa. Cryobiology 2020, 92, 109–116. [Google Scholar] [CrossRef]
- Tsosura, T.V.S.; dos Santos, R.M.; Neto, A.H.C.; Chiba, F.Y.; Carnevali, A.C.N.; Mattera, M.S.d.L.C.; Belardi, B.E.; Cintra, L.T.Â.; Machado, N.E.d.S.; Matsushita, D.H. Maternal Apical Periodontitis Increases Insulin Resistance and Modulates the Antioxidant Defense System in the Gastrocnemius Muscle of Adult Offspring. J. Endod. 2021, 47, 1126–1131. [Google Scholar] [CrossRef]
- Malik, R.; Kalra, S.; Bhatia, S.; Al Harrasi, A.; Singh, G.; Mohan, S.; Makeen, H.A.; Albratty, M.; Meraya, A.; Bahar, B.; et al. Overview of therapeutic targets in management of dementia. Biomed. Pharmacother. 2022, 152, 113168. [Google Scholar] [CrossRef]
- Abdel-Salam, O.M.E.; Hamdy, S.M.; Seadawy, S.A.M.; Galal, A.F.; Abouelfadl, D.M.; Atrees, S.S. Effect of piracetam, vincamine, vinpocetine, and donepezil on oxidative stress and neurodegeneration induced by aluminum chloride in rats. Comp. Clin. Pathol. 2015, 25, 305–318. [Google Scholar] [CrossRef]
- Zhou, R.; Chen, H.; Chen, J.; Chen, X.; Wen, Y.; Xu, L. Extract from Astragalus membranaceus inhibit breast cancer cells proliferation via PI3K/AKT/mTOR signaling pathway. BMC Complement. Altern. Med. 2018, 18, 1–8. [Google Scholar] [CrossRef]




| Group Number | Group Details | Treatment | |
| Day 1-6 | Day 7th | ||
| G-I | Normal Control | 10 mL/Kg/p.o. Normal saline | 10 mL/Kg/p.o. Normal saline |
| G-II | Amnesic Control | 10 mL/Kg/p.o. 5 % CMC | 10 mg/Kg/p.o. Scopolamine |
| G-III | Standard Control | 200 mg/Kg/p.o. Piracetam | 200 mg/Kg/p.o. Piracetam |
| G-IV | Silymarin Control | 200 mg/Kg/p.o. Silymarin | 10 mg/Kg/p.o. Scopolamine + 200 mg/Kg/p.o. Silymarin |
| G-V | Experiment Control (low dose) | 20 mg/Kg/p.o. HPSL nano-gel | 10 mg/Kg/p.o. Scopolamine + 20 mg/Kg/p.o. HPSL neon-gel |
| G-VI | Experiment Control (high dose) | 40 mg/Kg/p.o. HPSL nano-gel | 10 mg/Kg/p.o. Scopolamine + 40 mg/Kg/p.o. HPSL nano-gel |
| Indication | Scoring | Grading | Histology Activity Index (HAI) = Sum of the scores |
| Necrosis |
0 | Absence | |
| 1 | Minor | ||
| 2 | Modest | ||
| 3 | Marked | ||
| Inflammation |
0 | Absence | |
| 1 | Minor | ||
| 2 | Modest | ||
| 3 | Marked | ||
| Fibrosis |
0 | Absence | |
| 1 | Minor | ||
| 2 | Modest | ||
| 3 | Marked | ||
| Edema |
0 | Absence | |
| 1 | Minor | ||
| 2 | Modest | ||
| 3 | Marked | ||
| Degeneration | 0 | Absence | |
| 1 | Minor | ||
| 2 | Modest | ||
| 3 | Marked |
| HPSL-1 | HPSL-2 | HPSL-3 | HPSL-4 | |
| Silymarin (% w/v) | 0.5 | 0.5 | 0.5 | 0.5 |
| Heparin (% w/v) | 1 | 1 | 2 | 2 |
| Pullulan (% w/v) | 1 | 2 | 1 | 2 |
| Particle size Mean ± SD (nm) | 189.73 ± 14.29 | 233.81 ± 39.64 | 406.07 ± 19.33 | 319.76 ± 21.57 |
| Loading efficiency | 27.55 ± 6.89 | 39.16 ± 7.45 | 30.91 ± 4.08 | 42.74 ± 6.02 |
| Entrapment efficiency | 67.22 ± 11.37 | 89.31 ± 7.74 | 73.53 ± 12.05 | 93.67 ± 3.21 |
| PDI Mean ± SD | 0.306 ± 0.025 | 0.427 ± 0.014 | 0.504 ± 0.061 | 0.596 ± 0.071 |
| Zeta potential Mean ± SD (mV) | -26.39 ± 4.14 | -29.88 ± 5.62 | -23.72 ± 7.64 | -25.69 ± 7.98 |
| Groups | Initial transfer latency L1 (Sec) | Retention transfer latency L2 (Sec) |
Inflexion Ratio I.R = L1 – L2 / L2 |
| G-I | 21.00 ± 0.73 | 17.83 ± 1.13 | 0.18 ± 0.04 |
| G-II | 70.50 ± 2.86π | 85.16 ± 1.95π | -0.16 ± 0.04µ |
| G-III | 44.83 ± 1.40α | 37.66 ± 1.25α | 0.20 ± 0.05γ |
| G-IV | 19.66 ± 0.88α | 16.50 ± 0.76α | 0.19 ± 0.03γ |
| G-V | 35.50 ± 1.60α | 25.66 ± 1.35α | 0.40 ± 0.11α |
| G-VI | 41.16 ± 1.24α | 24.33 ± 1.47α | 0.71 ± 0.10α |
| Groups | Day-1 | Day-2 |
| No of Poking in 5 min | No of Poking in 5 min | |
| G-I | 45.83 ± 1.35 | 40.33 ± 1.28 |
| G-II | 22.33 ± 1.58π | 24.83 ± 1.55π |
| G-III | 40.66 ± 1.35α | 39.16 ± 1.66α |
| G-IV | 38.66 ± 1.83α | 34.66 ± 2.29β |
| G-V | 41.00 ± 1.93α | 39.16 ± 2.27α |
| G-VI | 50.16 ± 2.34α | 43.66 ± 1.76α |
| Groups | Day-1 | Day-2 | ||
| Time Spent in Dark Compartment (Sec) | Time Spent in Light Compartment (Sec) | Time Spent in Dark Compartment (Sec) | Time Spent in Light Compartment (Sec) | |
| G-I | 247.66 ± 1.97 | 52.33 ± 1.97 | 248.50 ± 4.10 | 51.50 ± 4.10 |
| G-II | 112.33 ± 5.82π | 187.66 ± 5.82π | 089.83 ± 4.52π | 210.16 ± 4.51π |
| G-III | 233.66 ± 2.57α | 66.33 ± 2.57α | 239.66 ± 4.82α | 57.00 ± 3.67α |
| G-IV | 201.66 ± 3.06α | 98.33 ± 3.06α | 241.16 ± 3.60α | 58.83 ± 3.60α |
| G-V | 240.50 ± 3.08α | 59.50 ± 3.08α | 247.66 ± 2.57α | 52.33 ± 2.57α |
| G-VI | 254.66 ± 5.42α | 45.33 ± 5.42α | 258.66 ± 3.98α | 41.33 ± 3.98α |
| Groups |
AChE (µmol/min/mg) |
ChAT (µmol/min/mg) |
CAT (U/mg of homogenate) |
GSH (U/mg of homogenate) |
MDA (nmol/h/g) |
SOD (U/mg of homogenate) |
| G-I | 04.52 ± 0.26 | 12.29 ± 1.01 | 01.48 ± 0.16 | 40.75 ± 0.89 | 01.62 ± 0.12 | 25.88 ± 0.93 |
| G-II | 09.28 ± 0.37π | 08.08 ± 0.82ns | 00.62 ± 0.03π | 18.12 ± 0.34π | 07.05 ± 0.35π | 08.60 ± 0.26π |
| G-III | 05.02 ± 0.27α | 15.85 ± 1.21α | 01.34 ± 0.07α | 41.34 ± 1.09α | 02.80 ± 0.20α | 23.52 ± 0.81α |
| G-IV | 06.90 ± 0.33α | 12.64 ± 0.73γ | 01.45 ± 0.14α | 42.02 ± 1.06α | 03.16 ± 0.19α | 22.69 ± 0.72α |
| G-V | 05.60 ± 0.33α | 13.68 ± 1.08β | 01.81 ± 0.06α | 47.92 ± 0.78α | 02.88 ± 0.22α | 24.67 ± 0.79α |
| G-VI | 04.09 ± 0.26α | 17.93 ± 1.14α | 01.84 ± 0.07α | 48.22 ± 0.96α | 02.71 ± 0.15α | 25.06 ± 0.97α |
| Groups | Relevant score of histopathological lesions | |||||
|---|---|---|---|---|---|---|
| Necrosis | Inflammation | Fibrosis | Edema | Degeneration | HAI | |
| G-I | 0 | 0 | 0 | 0 | 0 | 0 |
| G-II | 1 | 3 | 2 | 3 | 2 | 11 |
| G-III | 0 | 1 | 1 | 2 | 0 | 4 |
| G-IV | 1 | 2 | 1 | 2 | 1 | 7 |
| G-V | 0 | 2 | 0 | 2 | 1 | 5 |
| G-VI | 1 | 1 | 0 | 1 | 1 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
