Submitted:
17 January 2026
Posted:
19 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Moon
2.1. Lunar Samples
2.2. Orbital Observations
2.3. Petrogenesis
3. Asteroids
3.1. Chondrite
3.2. Achondrite
3.3. Vesta
4. Mars
4.1. Martian Meteorites
4.2. Rover Observations
4.3. Orbital Observations
5. Venus and Mercury
5.1. Venus
5.2. Mercury
6. Granitic Systematics
6.1. Petrology, Geochemistry, Chronology
6.2. Dominant Petrogenesis
6.3. Abundance Estimates
7. Implications for Earth
7.1. Hadean Granites
7.2. Archean Granites
8. Conclusion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, M.; Chen, K.; Rudnick, R.L. Archean Upper Crust Transition from Mafic to Felsic Marks the Onset of Plate Tectonics. Science. 2016, 351, 372–375. [Google Scholar] [CrossRef]
- Rollinson, H. There Were No Large Volumes of Felsic Continental Crust in the Early Earth. Geosphere 2017, 13, 235–246. [Google Scholar] [CrossRef]
- Turner, S.; Wilde, S.; Wörner, G.; Schaefer, B.; Lai, Y.J. An Andesitic Source for Jack Hills Zircon Supports Onset of Plate Tectonics in the Hadean. Nat. Commun. 2020, 11, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Shang, S.; Lin, Y.; van Westrenen, W.; Brouwer, F.M. Evolution of Magma Compositions and Phosphorus Availability in Early Earth’s Crust: New Constraints from Zircon-Melt Partitioning Experiments. Geology 2024, XX, 1–5. [Google Scholar] [CrossRef]
- Bonin, B. Extra-Terrestrial Igneous Granites and Related Rocks: A Review of Their Occurrence and Petrogenesis. Lithos 2012, 153, 3–24. [Google Scholar] [CrossRef]
- Wilde, S.A.; Valley, J.W.; Peck, W.H.; Graham, C.M. Evidence from Detrital Zircons for the Existence of Continental Crust and Oceans on the Earth 4.4 Gyr Ago. Nature 2001, 409, 175–178. [Google Scholar] [CrossRef]
- Harrison, T.M.; Schmitt, A.K. High Sensitivity Mapping of Ti Distributions in Hadean Zircons. Earth Planet. Sci. Lett. 2007, 261, 9–19. [Google Scholar] [CrossRef]
- Mojzsis, S.J.; Cates, N.L.; Caro, G.; Trail, D.; Abramov, O.; Guitreau, M.; Blichert-Toft, J.; Hopkins, M.D.; Bleeker, W. Component Geochronology in the Polyphase ca. 3920Ma Acasta Gneiss. Geochim. Cosmochim. Acta 2014, 133, 68–96. [Google Scholar] [CrossRef]
- Reimink, J.R.; Chacko, T.; Stern, R.A.; Heaman, L.M. Earth’s Earliest Evolved Crust Generated in an Iceland-like Setting. Nat. Geosci. 2014, 7, 529–533. [Google Scholar] [CrossRef]
- Campbell, I.H.; Taylor, S.R. No Water, No Granites - No Oceans, No Continents. Geophys. Res. Lett. 1983, 10, 1061–1064. [Google Scholar] [CrossRef]
- Laurent, O.; Martin, H.; Moyen, J.F.; Doucelance, R. The Diversity and Evolution of Late-Archean Granitoids: Evidence for the Onset of “Modern-Style” Plate Tectonics between 3.0 and 2.5 Ga. Lithos 2014, 205, 208–235. [Google Scholar] [CrossRef]
- Moyen, J.F. The Composite Archaean Grey Gneisses: Petrological Significance, and Evidence for a Non-Unique Tectonic Setting for Archaean Crustal Growth. Lithos 2011, 123, 21–36. [Google Scholar] [CrossRef]
- Shih, C.Y.; Nyquist, L.E.; Wiesmann, H. K-Ca Chronology of Lunar Granites. Geochim. Cosmochim. Acta 1993, 57, 4827–4841. [Google Scholar] [CrossRef]
- Terada, K.; Bischoff, A. Asteroidal Granite-like Magmatism 4.53 GYR Ago. Astrophys. J. 2009, 699, 68–71. [Google Scholar] [CrossRef]
- Beard, A.D.; Downes, H.; Chaussidon, M. Petrology of a Nonindigenous Microgranitic Clast in Polymict Ureilite EET 87720: Evidence for Formation of Evolved Melt on an Unknown Parent Body. Meteorit. Planet. Sci. 2015, 50, 1613–1623. [Google Scholar] [CrossRef]
- Srinivasan, P.; Dunlap, D.R.; Agee, C.B.; Wadhwa, M.; Coleff, D.; Ziegler, K.; Zeigler, R.; McCubbin, F.M. Silica-Rich Volcanism in the Early Solar System Dated at 4.565 Ga. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef]
- Warren, P.H.; Taylor, G.J.; Keil, K.; Shirley, D.N.; Wasson, J.T. Petrology and Chemistry of Two “Large” Granite Clasts from the Moon. Earth Planet. Sci. Lett. 1983, 64, 175–185. [Google Scholar] [CrossRef]
- Seddio, S.M.; Jolliff, B.L.; Korotev, R.L.; Zeigler, R.A. Petrology and Geochemistry of Lunar Granite 12032,366-19 and Implications for Lunar Granite Petrogenesis. Am. Mineral. 2013, 98, 1697–1713. [Google Scholar] [CrossRef]
- Warren, P.H. A Concise Compilation of Petrologic Information on Possibly Pristine Nonmare Moon Rocks. Am. Mineral. 1993, 78, 360–376. [Google Scholar]
- Shervais, J.W.; Taylor, L.A. Micrographic Granite: More from Apollo 14. In Proceedings of the Lunar and Planetary Science Conference; 1983; Vol. 14, pp. 696–697. [Google Scholar]
- Glotch, T.D.; Lucey, P.G.; Bandfield, J.L.; Greenhagen, B.T.; Thomas, I.R.; Elphic, R.C.; Bowles, N.; Wyatt, M.B.; Allen, C.C.; Hanna, K.D.; et al. Highly Silicic Compositions on the Moon. Science. 2010, 329, 1510–1513. [Google Scholar] [CrossRef]
- Jolliff, B.L.; Wiseman, S.A.; Lawrence, S.J.; Tran, T.N.; Robinson, M.S.; Sato, H.; Hawke, B.R.; Scholten, F.; Oberst, J.; Hiesinger, H.; et al. Non-Mare Silicic Volcanism on the Lunar Farside at Compton-Belkovich. Nat. Geosci. 2011, 4, 566–571. [Google Scholar] [CrossRef]
- Gullikson, A.L.; Hagerty, J.J.; Reid, M.R.; Rapp, J.F.; Draper, D.S. Silicic Lunar Volcanism: Testing the Crustal Melting Model. Am. Mineral. 2016, 101, 2312–2321. [Google Scholar] [CrossRef]
- Arnold, J.R.; Metzger, A.E.; Reedy, R.C. Computer-Generated Maps of Lunar Composition from Gamma Ray Data 1977.
- Roedder, E.; Weiblen, P.W. Silicate Liquid Immiscibility in Lunar Magmas, Evidenced by Melt Inclusions in Lunar Rocks. Science. 1970, 167, 641–644. [Google Scholar] [CrossRef]
- Rutherford, M.J.; Hess, P.C.; Daniel, G.H. Experimental Liquid Line of Descent and Liquid Immiscibility for Basalt 70017 GRANITIC MAGMAS in the Lunar Crust Are Indicated by the Occurrence of Granite. Lunar Planet. Sci. Conf. Proc. 1974, I, 569–583. [Google Scholar]
- Barrat, J.A.; Chaussidon, M.; Yamaguchi, A.; Beck, P.; Villeneuve, J.; Byrne, D.J.; Broadley, M.W.; Marty, B. A 4,565-My-Old Andesite from an Extinct Chondritic Protoplanet. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Day, J.M.D.; Ash, R.D.; Liu, Y.; Bellucci, J.J.; Rumble, D.; McDonough, W.F.; Walker, R.J.; Taylor, L.A. Early Formation of Evolved Asteroidal Crust. Nature 2009, 457, 179–182. [Google Scholar] [CrossRef]
- Day, J.M.D.; Walker, R.J.; Ash, R.D.; Liu, Y.; Rumble, D.; Irving, A.J.; Goodrich, C.A.; Tait, K.; McDonough, W.F.; Taylor, L.A. Origin of Felsic Achondrites Graves Nunataks 06128 and 06129, and Ultramafic Brachinites and Brachinite-like Achondrites by Partial Melting of Volatile-Rich Primitive Parent Bodies. Geochim. Cosmochim. Acta 2012, 81, 94–128. [Google Scholar] [CrossRef]
- Hahn, T.M.; Lunning, N.G.; McSween, H.Y.; Bodnar, R.J.; Taylor, L.A. Dacite Formation on Vesta: Partial Melting of the Eucritic Crust. Meteorit. Planet. Sci. 2017, 52, 1173–1196. [Google Scholar] [CrossRef]
- Bischoff, A.; Horstmann, M.; Barrat, J.A.; Chaussidon, M.; Pack, A.; Herwartz, D.; Ward, D.; Vollmer, C.; Decker, S. Trachyandesitic Volcanism in the Early Solar System. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 12689–12692. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, A. Mineralogy, Chemistry and Noble Gas Contents of Adzhi-Bogdo - an LL3- 6 Chondritic Breccia with L-Chondrite and Granitoidal Clasts. Meteoritics 1993, 28, 570–578. [Google Scholar] [CrossRef]
- Sokol, A.K.; Mezger, K.; Chaussidon, M.; Bischoff, A. Achondritic Fragments in Ordinary Chondrite Breccias; 2007; Vol. 42. [Google Scholar]
- Nicklas, R.W.; Day, J.M.D.; Gardner-Vandy, K.G.; Udry, A. Early Silicic Magmatism on a Differentiated Asteroid. Nat. Geosci. 2022, 15, 696–699. [Google Scholar] [CrossRef]
- Santos, A.R.; Agee, C.B.; McCubbin, F.M.; Shearer, C.K.; Burger, P. V.; Tartèse, R.; Anand, M. Petrology of Igneous Clasts in Northwest Africa 7034: Implications for the Petrologic Diversity of the Martian Crust. Geochim. Cosmochim. Acta 2015, 157, 56–85. [Google Scholar] [CrossRef]
- Hewins, R.H.; Zanda, B.; Humayun, M.; Nemchin, A.; Lorand, J.P.; Pont, S.; Deldicque, D.; Bellucci, J.J.; Beck, P.; Leroux, H.; et al. Regolith Breccia Northwest Africa 7533: Mineralogy and Petrology with Implications for Early Mars. Meteorit. Planet. Sci. 2017, 52, 89–124. [Google Scholar] [CrossRef]
- Lindner, M.; Schmitt, A.K.; Krot, A.N.; Brenker, F.E. Rhyolitic (Micrographic Granite) Igneous Clasts from Ancient Mars in Meteorite Northwest Africa 8171. Lunar Planet. Sci. Conf. 2020, 3, 1382. [Google Scholar] [CrossRef]
- Malarewicz, V.; Beyssac, O.; Zanda, B.; Marin-Carbonne, J.; Leroux, H.; Rubatto, D.; Bouvier, A.S.; Deldicque, D.; Pont, S.; Bernard, S.; et al. Evidence for Pre-Noachian Granitic Rocks on Mars from Quartz in Meteorite NWA 7533. Nat. Geosci. 2025, 18, 207–212. [Google Scholar] [CrossRef]
- Bouvier, L.C.; Costa, M.M.; Connelly, J.N.; Jensen, N.K.; Wielandt, D.; Storey, M.; Nemchin, A.A.; Whitehouse, M.J.; Snape, J.F.; Bellucci, J.J.; et al. Evidence for Extremely Rapid Magma Ocean Crystallization and Crust Formation on Mars. Nature 2018, 558, 586–589. [Google Scholar] [CrossRef]
- Sautter, V.; Toplis, M.J.; Wiens, R.C.; Cousin, A.; Fabre, C.; Gasnault, O.; Maurice, S.; Forni, O.; Lasue, J.; Ollila, A.; et al. In Situ Evidence for Continental Crust on Early Mars. Nat. Geosci. 2015, 8, 605–609. [Google Scholar] [CrossRef]
- Sautter, V.; Toplis, M.J.; Beck, P.; Mangold, N.; Wiens, R.; Pinet, P.; Cousin, A.; Maurice, S.; LeDeit, L.; Hewins, R.; et al. Magmatic Complexity on Early Mars as Seen through a Combination of Orbital, in-Situ and Meteorite Data. Lithos 2016, 254–255, 36–52. [Google Scholar] [CrossRef]
- Wieczorek, M.A.; Zuber, M.T. Thickness of the Martian Crust: Improved Constraints from Geoid-to-Topography Ratios. J. Geophys. Res. E Planets 2004, 109, 1–16. [Google Scholar] [CrossRef]
- Baratoux, D.; Samuel, H.; Michaut, C.; Toplis, M.J.; Monnereau, M.; Wieczorek, M.; Garcia, R.; Kurita, K. Petrological Constraints on the Density of the Martian Crust. J. Geophys. Res. Planets 2014, 119, 1707–1727. [Google Scholar] [CrossRef]
- Christensen, P.R.; McSween, H.Y.; Bandfield, J.L.; Ruff, S.W.; Rogers, A.D.; Hamilton, V.E.; Gorelick, N.; Wyatt, M.B.; Jakosky, B.M.; Kieffer, H.H.; et al. Evidence for Magmatic Evolution and Diversity on Mars from Infrared Observations. Nature 2005, 436, 504–509. [Google Scholar] [CrossRef]
- Wray, J.J.; Hansen, S.T.; Dufek, J.; Swayze, G.A.; Murchie, S.L.; Seelos, F.P.; Skok, J.R.; Irwin, R.P.; Ghiorso, M.S. Prolonged Magmatic Activity on Mars Inferred from the Detection of Felsic Rocks. Nat. Geosci. 2013, 6, 1013–1017. [Google Scholar] [CrossRef]
- Namiki, N.; Solomon, S.C. Impact Crater Densities on Volcanoes and Coronae on Venus: Implications for Volcanic Resurfacing. Science. 1994, 265, 929–933. [Google Scholar] [CrossRef]
- Gülcher, A.J.P.; Gerya, T. V.; Montési, L.G.J.; Munch, J. Corona Structures Driven by Plume–Lithosphere Interactions and Evidence for Ongoing Plume Activity on Venus. Nat. Geosci. 2020, 13, 547–554. [Google Scholar] [CrossRef]
- Hashimoto, G.L.; Roos-Serote, M.; Sugita, S.; Gilmore, M.S.; Kamp, L.W.; Carlson, R.W.; Baines, K.H. Felsic Highland Crust on Venus Suggested by Galileo Near-Infrared Mapping Spectrometer Data. J. Geophys. Res. E Planets 2009, 114, 1–10. [Google Scholar] [CrossRef]
- Ivanov, M.A.; Head, J.W. Stratigraphic and Geographic Distribution of Steep-Sided Domes on Venus: Preliminary Results from Regional Geological Mapping and Implications for Their Origin. J. Geophys. Res. E Planets 1999, 104, 18907–18924. [Google Scholar] [CrossRef]
- Petford, N. Dyke Widths and Ascents Rates of Silicic Magmas on Venus. Trans. R. Soc. Edinburgh, Earth Sci. 2000, 91, 87–95. [Google Scholar] [CrossRef]
- Kargel, J.S.; Komatsu, G.; Baker, V.R.; Strom, R.G. The Volcanology of Venera and VEGA Landing Sites and the Geochemistry of Venus. Icarus 1993, 103, 253–275. [Google Scholar] [CrossRef]
- Abdrakhimov, A.M.; Basilevsky, A.T. Geology of the Venera and Vega Landing-Site Regions. Sol. Syst. Res. 2002, 36, 136–159. [Google Scholar] [CrossRef]
- Massironi, M.; Cremonese, G.; Marchi, S.; Martellato, E.; Mottola, S.; Wagner, R.J. Mercury’s Geochronology Revised by Applying Model Production Function to Mariner 10 Data: Geological Implications. Geophys. Res. Lett. 2009, 36, 1–6. [Google Scholar] [CrossRef]
- Solomon, S.C. Mercury: The Enigmatic Innermost Planet. Earth Planet. Sci. Lett. 2003, 216, 441–455. [Google Scholar] [CrossRef]
- Filiberto, J.; Chin, E.; Day, J.M.D.; Franchi, I.A.; Greenwood, R.C.; Gross, J.; Penniston-Dorland, S.C.; Schwenzer, S.P.; Treiman, A.H. Geochemistry of Intermediate Olivine-Phyric Shergottite Northwest Africa 6234, with Similarities to Basaltic Shergottite Northwest Africa 480 and Olivine-Phyric Shergottite Northwest Africa 2990. Meteorit. Planet. Sci. 2012, 47, 1256–1273. [Google Scholar] [CrossRef]
- Collinet, M.; Grove, T.L. Widespread Production of Silica- and Alkali-Rich Melts at the Onset of Planetesimal Melting. Geochim. Cosmochim. Acta 2020, 277, 334–357. [Google Scholar] [CrossRef]
- Moyen, J.F.; Martin, H. Forty Years of TTG Research. Lithos 2012, 148, 312–336. [Google Scholar] [CrossRef]
- Bottke, W.F.; Vokrouhlický, D.; Marchi, S.; Swindle, T.; Scott, E.R.D.; Weirich, J.R.; Levison, H. Dating the Moon-Forming Impact Event with Asteroidal Meteorites. Science. 2015, 348, 321–323. [Google Scholar] [CrossRef] [PubMed]
- Herzberg, C.; Rudnick, R. Formation of Cratonic Lithosphere: An Integrated Thermal and Petrological Model. Lithos 2012, 149, 4–15. [Google Scholar] [CrossRef]
- Keller, C.B.; Harrison, T.M. Constraining Crustal Silica on Ancient Earth. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 21101–21107. [Google Scholar] [CrossRef] [PubMed]
- Ge, R.; Zhu, W.; Wilde, S.A.; Wu, H. Remnants of Eoarchean Continental Crust Derived from a Subducted Proto-Arc. Sci. Adv. 2018, 4, eaao3159. [Google Scholar] [CrossRef] [PubMed]
- Bédard, J.H. A Catalytic Delamination-Driven Model for Coupled Genesis of Archaean Crust and Sub-Continental Lithospheric Mantle. Geochim. Cosmochim. Acta 2006, 70, 1188–1214. [Google Scholar] [CrossRef]





| Sample | Lunar evolved rock | NWA 11119 | ALM-A | EC002 | EET 87220 | Adzhi-bogdo | GRA 06128/9 | DOM 10 | NWA 7034 |
| Major mineral | Ol、Px、Pl、Kfs、Q | Px、Pl、Q | Px、Pl、Q | Pl、Px、Q | Pl、Q | Kfs、Q、Ae | Ol、Px、Pl | Px、Pl、Kfs、Q | Px、Pl、Q |
| Mineral size | <~500 μm | ~1-~4 mm | ~0.2-~2 mm | ~0.2->10 mm | <~100 μm | ~100-~500 μm | ~0.1-~1 mm | ~0.1-~1 mm | <~100 μm |
| An of Pl | ~35-~85 | ~65-~92 | ~5-~55 | 6.7-21.6 | ~0-~12 | - | ~13-~14 | ~86 | 23-41 |
| Or of Kfs | ~88-~98 | 84.0-84.4 | ~96-~97 | ~97 | 65-92 | ||||
| Bulk SiO2 | >53 | ~59-~62 | 60 | 58 | 77 | 72-78 | 52-58 | 54.5 | 53-77 |
| Bulk Mg# | 0-62 | 64-85 | 61 | 53 | 0 | 15-47 | 28-39 | 23 | 26-58 |
| Bulk K2O/Na2O | 1-13 | ~0 | 0.03 | 0.08 | 0.10 | 3.21-18.63 | 0.30 | 0.09 | 0.05-1.48 |
| fO2 | < IW | < IW | - | <IW | - | - | IW to IW+1 | IW | - |
| Age(Ga) | 3.88-4.32 | 4.565 | 4.561 | 4.5659 | - | 4.533 | 4.52 | - | 4.4 |
| Parent body | The Moon | Ureilite | Ureilite | Ungrouped Chondrite | - | Ordinary Chondrite | Brachinite | Vesta | Mars |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
