Submitted:
12 January 2026
Posted:
14 January 2026
You are already at the latest version
Abstract
Keywords:
Introduction
2. Cerebellum structure and function
Cerebellar astroglial involvement in ASD
Cerebellar astrocytes involvement
Cerebellar microglia, macrophage, monocyte and neutrophil involvement
Neurotransmitters and cerebellar connectivity association with ASD
Cerebellar coordination of cerebral activity involvement in ASD.
Cerebellar signaling involved in ASD pathogenesis.
Mammalian target of rapamycin (mTOR)
Additional ASD-linked genes associated with cerebellar development.
Conclusion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Hampson, D. R.; Blatt, G. J. Autism spectrum disorders and neuropathology of the cerebellum. Front Neurosci 2015, vol. 9, pp. 420. [Google Scholar] [CrossRef] [PubMed]
- Maenner, M. J.; Shaw, K. A.; Bakian, A. V.; Bilder, D. A.; Durkin, M. S.; Esler, A.; Furnier, S. M.; Hallas, L.; Hall-Lande, J.; Hudson, A.; Hughes, M. M.; Patrick, M.; Pierce, K.; Poynter, J. N.; Salinas, A.; Shenouda, J.; Vehorn, A.; Warren, Z.; Constantino, J. N.; DiRienzo, M.; Fitzgerald, R. T.; Grzybowski, A.; Spivey, M. H.; Pettygrove, S.; Zahorodny, W.; Ali, A.; Andrews, J. G.; Baroud, T.; Gutierrez, J.; Hewitt, A.; Lee, L. C.; Lopez, M.; Mancilla, K. C.; McArthur, D.; Schwenk, Y. D.; Washington, A.; Williams, S.; Cogswell, M. E. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2018. MMWR Surveill Summ 2021, vol. 70(no. 11), 1–16. [Google Scholar] [CrossRef] [PubMed]
- Zafeiriou, D. I.; Ververi, A.; Dafoulis, V.; Kalyva, E.; Vargiami, E. Autism spectrum disorders: the quest for genetic syndromes. Am J Med Genet B Neuropsychiatr Genet 2013, vol. 162b(no. 4), 327–66. [Google Scholar] [CrossRef] [PubMed]
- Mead, J.; Ashwood, P. Evidence supporting an altered immune response in ASD. Immunol Lett 2015, vol. 163(no. 1), 49–55. [Google Scholar] [CrossRef]
- Wang, S. S.; Kloth, A. D.; Badura, A. The cerebellum, sensitive periods, and autism. Neuron 2014, vol. 83(no. 3), 518–32. [Google Scholar] [CrossRef]
- Mosconi, M. W.; Wang, Z.; Schmitt, L. M.; Tsai, P.; Sweeney, J. A. The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders. Front Neurosci 2015, vol. 9, pp. 296. [Google Scholar] [CrossRef]
- Stoodley, C. J.; D'Mello, A. M.; Ellegood, J.; Jakkamsetti, V.; Liu, P.; Nebel, M. B.; Gibson, J. M.; Kelly, E.; Meng, F.; Cano, C. A.; Pascual, J. M.; Mostofsky, S. H.; Lerch, J. P.; Tsai, P. T. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci 2017, vol. 20(no. 12), 1744–1751. [Google Scholar] [CrossRef]
- Schmahmann, J. D. The cerebellum and cognition. Neurosci Lett 2019, vol. 688, 62–75. [Google Scholar] [CrossRef]
- Marien R., P. a. B. Chapter 11 - Language and the cerebellum. In Handbook of Clinical Neurology; 2018; pp. ^pp. 182–202. [Google Scholar]
- Van Overwalle, F.; Manto, M.; Cattaneo, Z.; Clausi, S.; Ferrari, C.; Gabrieli, J. D. E.; Guell, X.; Heleven, E.; Lupo, M.; Ma, Q.; Michelutti, M.; Olivito, G.; Pu, M.; Rice, L. C.; Schmahmann, J. D.; Siciliano, L.; Sokolov, A. A.; Stoodley, C. J.; van Dun, K.; Vandervert, L.; Leggio, M. Consensus Paper: Cerebellum and Social Cognition. Cerebellum 2020, vol. 19(no. 6), 833–868. [Google Scholar] [CrossRef]
- Fatemi, S. H.; Aldinger, K. A.; Ashwood, P.; Bauman, M. L.; Blaha, C. D.; Blatt, G. J.; Chauhan, A.; Chauhan, V.; Dager, S. R.; Dickson, P. E.; Estes, A. M.; Goldowitz, D.; Heck, D. H.; Kemper, T. L.; King, B. H.; Martin, L. A.; Millen, K. J.; Mittleman, G.; Mosconi, M. W.; Persico, A. M.; Sweeney, J. A.; Webb, S. J.; Welsh, J. P. Consensus paper: pathological role of the cerebellum in autism. Cerebellum 2012, vol. 11(no. 3), 777–807. [Google Scholar] [CrossRef]
- Mapelli, L.; Soda, T.; D'Angelo, E.; Prestori, F. The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. Int J Mol Sci 2022, vol. 23(no. 7). [Google Scholar] [CrossRef] [PubMed]
- Kelly, E.; Meng, F.; Fujita, H.; Morgado, F.; Kazemi, Y.; Rice, L. C.; Ren, C.; Escamilla, C. O.; Gibson, J. M.; Sajadi, S.; Pendry, R. J.; Tan, T.; Ellegood, J.; Basson, M. A.; Blakely, R. D.; Dindot, S. V.; Golzio, C.; Hahn, M. K.; Katsanis, N.; Robins, D. M.; Silverman, J. L.; Singh, K. K.; Wevrick, R.; Taylor, M. J.; Hammill, C.; Anagnostou, E.; Pfeiffer, B. E.; Stoodley, C. J.; Lerch, J. P.; du Lac, S.; Tsai, P. T. Regulation of autism-relevant behaviors by cerebellar-prefrontal cortical circuits. Nat Neurosci 2020, vol. 23(no. 9), 1102–1110. [Google Scholar]
- Rueda-Alana, E.; Garcia-Moreno, F. Time in Neurogenesis: Conservation of the Developmental Formation of the Cerebellar Circuitry. Brain Behav Evol 2022, vol. 97(no. 1-2), 33–47. [Google Scholar] [CrossRef] [PubMed]
- D. M. Broussard, The Cerebellum: Learning Movement, Language, and Social Skills.; John Wiley & Sons, Inc.: Chichester, 2014.
- Sereno, M. I.; Diedrichsen, J.; Tachrount, M.; Testa-Silva, G.; d'Arceuil, H.; De Zeeuw, C. The human cerebellum has almost 80% of the surface area of the neocortex. Proc Natl Acad Sci U S A 2020, vol. 117(no. 32), 19538–19543. [Google Scholar]
- Weaver, A. H. Reciprocal evolution of the cerebellum and neocortex in fossil humans. Proc Natl Acad Sci U S A 2005, vol. 102(no. 10), 3576–80. [Google Scholar] [CrossRef]
- Herculano-Houzel, S. Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat 2010, vol. 4, pp. 12. [Google Scholar]
- Llinas, R. R.; Walton, K.D.; Lang, E.J. Ch. 7 Cerebellum; Shepherd, GM, Ed.; Oxford University Press: The Synaptic Organization of the Brain, 2004. [Google Scholar]
- Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Hall, W.C.; LaMantia, A.S.; White, L.E. Neuroscience, 5th ed.; Sinauer: Sunderland, Mass., 2011. [Google Scholar]
- Baizer, J. S. Neuroanatomy of autism: what is the role of the cerebellum? Cereb Cortex 2024, vol. 34(no. 13), 94–103. [Google Scholar]
- Ito, M.; Kano, M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett 1982, vol. 33(no. 3), 253–8. [Google Scholar] [CrossRef]
- Kelly, E.; Escamilla, C. O.; Tsai, P. T. Cerebellar Dysfunction in Autism Spectrum Disorders: Deriving Mechanistic Insights from an Internal Model Framework. Neuroscience 2021, vol. 462, 274–287. [Google Scholar] [CrossRef]
- Green, J. T.; Arenos, J. D.; Dillon, C. J. The effects of moderate neonatal ethanol exposure on eyeblink conditioning and deep cerebellar nuclei neuron numbers in the rat. Alcohol 2006, vol. 39(no. 3), 135–50. [Google Scholar] [CrossRef]
- Dum, R. P.; Strick, P. L. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol 2003, vol. 89(no. 1), 634–9. [Google Scholar]
- Middleton, F. A.; Strick, P. L. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 2001, vol. 21(no. 2), 700–12. [Google Scholar] [CrossRef] [PubMed]
- Teune, T. M.; van der Burg, J.; van der Moer, J.; Voogd, J.; Ruigrok, T. J. Topography of cerebellar nuclear projections to the brain stem in the rat. Prog Brain Res 2000, vol. 124, 141–72. [Google Scholar]
- de Zeeuw, C. I.; Holstege, J. C.; Ruigrok, T. J.; Voogd, J. Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: anterograde tracing combined with immunocytochemistry. J Comp Neurol 1989, vol. 284(no. 1), 12–35. [Google Scholar]
- Fredette, B. J.; Mugnaini, E. The GABAergic cerebello-olivary projection in the rat. Anat Embryol (Berl) 1991, vol. 184(no. 3), 225–43. [Google Scholar]
- Habas, C.; Dun, K.T.; Manto, M.; Marien, P. The Linguistic Cerebellum, Chapter 13 - Deep Cerebellar Nuclei (DCN) and Language; 2016. [Google Scholar]
- McAfee, S. S.; Liu, Y.; Sillitoe, R. V.; Heck, D. H. Cerebellar Coordination of Neuronal Communication in Cerebral Cortex. Front Syst Neurosci 2021, vol. 15, pp. 781527. [Google Scholar]
- Marien, P.; van Dun, K.; Verhoeven, J. Cerebellum and apraxia. Cerebellum 2015, vol. 14(no. 1), 39–42. [Google Scholar] [CrossRef]
- Tierney, C.; Mayes, S.; Lohs, S. R.; Black, A.; Gisin, E.; Veglia, M. How Valid Is the Checklist for Autism Spectrum Disorder When a Child Has Apraxia of Speech? J Dev Behav Pediatr 2015, vol. 36(no. 8), 569–74. [Google Scholar]
- Schmahmann, J. D. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 2004, vol. 16(no. 3), 367–78. [Google Scholar]
- Ecker, C.; Marquand, A.; Mourao-Miranda, J.; Johnston, P.; Daly, E. M.; Brammer, M. J.; Maltezos, S.; Murphy, C. M.; Robertson, D.; Williams, S. C.; Murphy, D. G. Describing the brain in autism in five dimensions--magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. J Neurosci 2010, vol. 30(no. 32), 10612–23. [Google Scholar] [CrossRef]
- Riva, D.; Annunziata, S.; Contarino, V.; Erbetta, A.; Aquino, D.; Bulgheroni, S. Gray matter reduction in the vermis and CRUS-II is associated with social and interaction deficits in low-functioning children with autistic spectrum disorders: a VBM-DARTEL Study. Cerebellum 2013, vol. 12(no. 5), 676–85. [Google Scholar] [CrossRef] [PubMed]
- D'Mello, A. M.; Crocetti, D.; Mostofsky, S. H.; Stoodley, C. J. Cerebellar gray matter and lobular volumes correlate with core autism symptoms. Neuroimage Clin 2015, vol. 7, 631–9. [Google Scholar]
- Bailey, A.; Luthert, P.; Dean, A.; Harding, B.; Janota, I.; Montgomery, M.; Rutter, M.; Lantos, P. A clinicopathological study of autism. Brain 1998, vol. 121 Pt 5, 889–905. [Google Scholar] [CrossRef] [PubMed]
- Bauman, M.; Kemper, T. L. Histoanatomic observations of the brain in early infantile autism. Neurology 1985, vol. 35(no. 6), 866–74. [Google Scholar] [CrossRef]
- Skefos, J.; Cummings, C.; Enzer, K.; Holiday, J.; Weed, K.; Levy, E.; Yuce, T.; Kemper, T.; Bauman, M. Regional alterations in purkinje cell density in patients with autism. PLoS One 2014, vol. 9(no. 2), pp. e81255. [Google Scholar] [CrossRef]
- Whitney, E. R.; Kemper, T. L.; Bauman, M. L.; Rosene, D. L.; Blatt, G. J. Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: a stereological experiment using calbindin-D28k. Cerebellum 2008, vol. 7(no. 3), 406–16. [Google Scholar] [CrossRef]
- Pardo, A.; Vargas, D. L.; Zimmerman, A. W. Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry 2005, vol. 17(no. 6), 485–95. [Google Scholar]
- Takano, T. Role of Microglia in Autism: Recent Advances. Dev Neurosci 2015, vol. 37(no. 3), 195–202. [Google Scholar]
- Vargas, L.; Nascimbene, C.; Krishnan, C.; Zimmerman, A. W.; Pardo, C. A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005, vol. 57(no. 1), 67–81. [Google Scholar]
- Jagadapillai, R.; Qiu, X.; Ojha, K.; Li, Z.; El-Baz, A.; Zou, S.; Gozal, E.; Barnes, G. N. Potential Cross Talk between Autism Risk Genes and Neurovascular Molecules: A Pilot Study on Impact of Blood Brain Barrier Integrity. Cells 2022, vol. 11(no. 14). [Google Scholar]
- Laurence, J. A.; Fatemi, S. H. Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum 2005, vol. 4(no. 3), 206–10. [Google Scholar] [CrossRef] [PubMed]
- Edmonson, C.; Ziats, M.N.; Rennert, O.M. Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum. Mol Autism 2014, vol. 5(no. 1), pp. 3. [Google Scholar]
- Deckmann, I.; Santos-Terra, J.; Fontes-Dutra, M.; Korbes-Rockenbach, M.; Bauer-Negrini, G.; Schwingel, G. B.; Riesgo, R.; Bambini-Junior, V.; Gottfried, C. Resveratrol prevents brain edema, blood-brain barrier permeability, and altered aquaporin profile in autism animal model. Int J Dev Neurosci 2021, vol. 81(no. 7), 579–604. [Google Scholar]
- Purcell, A. E.; Jeon, O. H.; Zimmerman, A. W.; Blue, M. E.; Pevsner, J. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology 2001, vol. 57(no. 9), 1618–28. [Google Scholar] [CrossRef]
- Crawford, D.; Chandley, M. J.; Szebeni, K.; Szebeni, A.; Waters, B.; Ordway, G. A. Elevated GFAP Protein in Anterior Cingulate Cortical White Matter in Males With Autism Spectrum Disorder. Autism Res 2015, vol. 8(no. 6), 649–57. [Google Scholar]
- Chung, W. S.; Clarke, L. E.; Wang, G. X.; Stafford, B. K.; Sher, A.; Chakraborty, C.; Joung, J.; Foo, L. C.; Thompson, A.; Chen, C.; Smith, S. J.; Barres, B. A. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 2013, vol. 504(no. 7480), 394–400. [Google Scholar] [CrossRef]
- Schafer, P.; Lehrman, E. K.; Kautzman, A. G.; Koyama, R.; Mardinly, A. R.; Yamasaki, R.; Ransohoff, R. M.; Greenberg, M. E.; Barres, B. A.; Stevens, B. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012, vol. 74(no. 4), 691–705. [Google Scholar] [CrossRef]
- Hong, S.; Beja-Glasser, V. F.; Nfonoyim, B. M.; Frouin, A.; Li, S.; Ramakrishnan, S.; Merry, K. M.; Shi, Q.; Rosenthal, A.; Barres, B. A.; Lemere, C. A.; Selkoe, D. J.; Stevens, B. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 2016, vol. 352(no. 6286), 712–716. [Google Scholar] [CrossRef]
- Morizawa, Y. M.; Hirayama, Y.; Ohno, N.; Shibata, S.; Shigetomi, E.; Sui, Y.; Nabekura, J.; Sato, K.; Okajima, F.; Takebayashi, H.; Okano, H.; Koizumi, S. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat Commun 2017, vol. 8(no. 1), pp. 28. [Google Scholar]
- Lee, H.; Kim, J. Y.; Noh, S.; Lee, H.; Lee, S. Y.; Mun, J. Y.; Park, H.; Chung, W. S. Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature 2021, vol. 590(no. 7847), 612–617. [Google Scholar]
- Morizawa, Y. M.; Matsumoto, M.; Nakashima, Y.; Endo, N.; Aida, T.; Ishikane, H.; Beppu, K.; Moritoh, S.; Inada, H.; Osumi, N.; Shigetomi, E.; Koizumi, S.; Yang, G.; Hirai, H.; Tanaka, K.; Tanaka, K. F.; Ohno, N.; Fukazawa, Y.; Matsui, K. Synaptic pruning through glial synapse engulfment upon motor learning. Nat Neurosci 2022, vol. 25(no. 11), 1458–1469. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S. H.; Folsom, T. D.; Reutiman, T. J.; Lee, S. Expression of astrocytic markers aquaporin 4 and connexin 43 is altered in brains of subjects with autism. Synapse 2008, vol. 62(no. 7), 501–7. [Google Scholar] [CrossRef] [PubMed]
- Figiel, M.; Allritz, C.; Lehmann, C.; Engele, J. Gap junctional control of glial glutamate transporter expression. Mol Cell Neurosci 2007, vol. 35(no. 1), 130–7. [Google Scholar]
- Stehberg, J.; Moraga-Amaro, R.; Salazar, C.; Becerra, A.; Echeverria, C.; Orellana, J. A.; Bultynck, G.; Ponsaerts, R.; Leybaert, L.; Simon, F.; Saez, J. C.; Retamal, M. A. Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala. FASEB J 2012, vol. 26(no. 9), 3649–57. [Google Scholar]
- Peng, B.; Xu, C.; Wang, S.; Zhang, Y.; Li, W. The Role of Connexin Hemichannels in Inflammatory Diseases. Biology (Basel) 2022, vol. 11(no. 2). [Google Scholar] [CrossRef]
- El-Ansary, A.; Al-Ayadhi, L. GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. J Neuroinflammation 2014, vol. 11, pp. 189. [Google Scholar]
- Horder, J.; Petrinovic, M. M.; Mendez, M. A.; Bruns, A.; Takumi, T.; Spooren, W.; Barker, G. J.; Kunnecke, B.; Murphy, D. G. Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models. Transl Psychiatry 2018, vol. 8(no. 1), pp. 106. [Google Scholar]
- Henstridge, C. M.; Tzioras, M.; Paolicelli, R. C. Glial Contribution to Excitatory and Inhibitory Synapse Loss in Neurodegeneration. Front Cell Neurosci 2019, vol. 13, pp. 63. [Google Scholar]
- Hernandez, D. E.; Salvadores, N. A.; Moya-Alvarado, G.; Catalan, R. J.; Bronfman, F. C.; Court, F. A. Axonal degeneration induced by glutamate excitotoxicity is mediated by necroptosis. J Cell Sci 2018, vol. 131(no. 22). [Google Scholar]
- Li, X.; Kong, H.; Wu, W.; Xiao, M.; Sun, X.; Hu, G. Aquaporin-4 maintains ependymal integrity in adult mice. Neuroscience 2009, vol. 162(no. 1), 67–77. [Google Scholar] [CrossRef]
- Papadopoulos, C.; Saadoun, S.; Verkman, A. S. Aquaporins and cell migration. Pflugers Arch 2008, vol. 456(no. 4), 693–700. [Google Scholar]
- Umenishi, F.; Schrier, R.W. Hypertonicity-induced aquaporin-1 (AQP1) expression is mediated by the activation of MAPK pathways and hypertonicity-responsive element in the AQP1 gene. J Biol Chem 2003, vol. 278(no. 18), 15765–70. [Google Scholar]
- Zhang, D.; Vetrivel, L.; Verkman, A. S. Aquaporin deletion in mice reduces intraocular pressure and aqueous fluid production. J Gen Physiol 2002, vol. 119(no. 6), 561–9. [Google Scholar] [CrossRef] [PubMed]
- Speake, T.; Freeman, L. J.; Brown, P. D. Expression of aquaporin 1 and aquaporin 4 water channels in rat choroid plexus. Biochim Biophys Acta 2003, vol. 1609(no. 1), 80–6. [Google Scholar] [CrossRef]
- Bloch, O.; Papadopoulos, M. C.; Manley, G. T.; Verkman, A. S. Aquaporin-4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess. J Neurochem 2005, vol. 95(no. 1), 254–62. [Google Scholar] [CrossRef]
- Papadopoulos, C.; Manley, G. T.; Krishna, S.; Verkman, A. S. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J 2004, vol. 18(no. 11), 1291–3. [Google Scholar] [CrossRef]
- Bloch, O.; Auguste, K. I.; Manley, G. T.; Verkman, A. S. Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab 2006, vol. 26(no. 12), 1527–37. [Google Scholar]
- Binder, D. K.; Yao, X.; Verkman, A. S.; Manley, G. T. Increased seizure duration in mice lacking aquaporin-4 water channels. Acta Neurochir Suppl 2006, vol. 96, 389–92. [Google Scholar]
- Padmawar, P.; Yao, X.; Bloch, O.; Manley, G. T.; Verkman, A. S. K+ waves in brain cortex visualized using a long-wavelength K+-sensing fluorescent indicator. Nat Methods 2005, vol. 2(no. 11), 825–7. [Google Scholar] [CrossRef]
- Azizi, F.; Chan, W.K.; Ardalan, M. Aquaporins: Bridging Normal Brain Development and Neurodevelopmental Disorder Mechanisms. Dev Neurosci 2025, 1–15. [Google Scholar] [CrossRef]
- Skucas, V. A.; Mathews, I. B.; Yang, J.; Cheng, Q.; Treister, A.; Duffy, A. M.; Verkman, A. S.; Hempstead, B. L.; Wood, M. A.; Binder, D. K.; Scharfman, H. E. Impairment of select forms of spatial memory and neurotrophin-dependent synaptic plasticity by deletion of glial aquaporin-4. J Neurosci 2011, vol. 31(no. 17), 6392–7. [Google Scholar]
- Fan, Y.; Liu, M.; Wu, X.; Wang, F.; Ding, J.; Chen, J.; Hu, G. Aquaporin-4 promotes memory consolidation in Morris water maze. Brain Struct Funct 2013, vol. 218(no. 1), 39–50. [Google Scholar]
- Yang, J.; Li, M. X.; Luo, Y.; Chen, T.; Liu, J.; Fang, P.; Jiang, B.; Hu, Z. L.; Jin, Y.; Chen, J. G.; Wang, F. Chronic ceftriaxone treatment rescues hippocampal memory deficit in AQP4 knockout mice via activation of GLT-1. Neuropharmacology 2013, vol. 75, 213–22. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. K.; Wang, F.; Wang, W.; Luo, Y.; Wu, P. F.; Xiao, J. L.; Hu, Z. L.; Jin, Y.; Hu, G.; Chen, J. G. Aquaporin-4 deficiency impairs synaptic plasticity and associative fear memory in the lateral amygdala: involvement of downregulation of glutamate transporter-1 expression. Neuropsychopharmacology 2012, vol. 37(no. 8), 1867–78. [Google Scholar] [CrossRef]
- Bear, M. F.; Malenka, R. C. Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 1994, vol. 4(no. 3), 389–99. [Google Scholar]
- Perea, M. Navarrete; Araque, A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 2009, vol. 32(no. 8), 421–31. [Google Scholar] [CrossRef]
- Ben Achour, S.; Pascual, O. Glia: the many ways to modulate synaptic plasticity. Neurochem Int 2010, vol. 57(no. 4), 440–5. [Google Scholar]
- Zeng, X. N.; Sun, X. L.; Gao, L.; Fan, Y.; Ding, J. H.; Hu, G. Aquaporin-4 deficiency down-regulates glutamate uptake and GLT-1 expression in astrocytes. Mol Cell Neurosci 2007, vol. 34(no. 1), 34–9. [Google Scholar]
- Papadopoulos, M. C.; Verkman, A. S. Aquaporin water channels in the nervous system. Nat Rev Neurosci 2013, vol. 14(no. 4), 265–77. [Google Scholar]
- Hubbard, A.; Szu, J. I.; Binder, D. K. The role of aquaporin-4 in synaptic plasticity, memory and disease. Brain Res Bull 2018, vol. 136, 118–129. [Google Scholar]
- Scharfman, H. E.; Binder, D. K. Aquaporin-4 water channels and synaptic plasticity in the hippocampus. Neurochem Int 2013, vol. 63(no. 7), 702–11. [Google Scholar]
- Kang, H.; Schuman, E. M. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 1995, vol. 267(no. 5204), 1658–62. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Akaneya, Y.; Hata, Y.; Tsumoto, T. Long-term depression is not induced by low-frequency stimulation in rat visual cortex in vivo: a possible preventing role of endogenous brain-derived neurotrophic factor. J Neurosci 2003, vol. 23(no. 9), 3761–70. [Google Scholar] [CrossRef] [PubMed]
- Huber, V. J.; Tsujita, M.; Kwee, I. L.; Nakada, T. Inhibition of aquaporin 4 by antiepileptic drugs. Bioorg Med Chem 2009, vol. 17(no. 1), 418–24. [Google Scholar]
- Igarashi, H.; Huber, V. J.; Tsujita, M.; Nakada, T. Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema. Neurol Sci 2011, vol. 32(no. 1), 113–6. [Google Scholar]
- Nishi, Y.; Toritsuka, M.; Takada, R.; Ishikawa, M.; Ishida, R.; Kayashima, Y.; Yamauchi, T.; Okumura, K.; Takeda, T.; Yamamuro, K.; Ikehara, M.; Noriyama, Y.; Kamikawa, K.; Murayama, S.; Ichikawa, O.; Nagata, H.; Okano, H.; Iwata, N.; Makinodan, M. Impaired synaptosome phagocytosis in macrophages of individuals with autism spectrum disorder. Mol Psychiatry 2025, vol. 30(no. 8), 3837–3845. [Google Scholar] [CrossRef]
- Chez, M. G.; Dowling, T.; Patel, P. B.; Khanna, P.; Kominsky, M. Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatr Neurol 2007, vol. 36(no. 6), 361–5. [Google Scholar]
- Li, X.; Chauhan, A.; Sheikh, A. M.; Patil, S.; Chauhan, V.; Li, X. M.; Ji, L.; Brown, T.; Malik, M. Elevated immune response in the brain of autistic patients. J Neuroimmunol 2009, vol. 207(no. 1-2), 111–6. [Google Scholar] [CrossRef]
- Wei, H.; Zou, H.; Sheikh, A. M.; Malik, M.; Dobkin, C.; Brown, W. T.; Li, X. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. J Neuroinflammation 2011, vol. 8, pp. 52. [Google Scholar]
- Garbett, K.; Ebert, P.J.; Mitchell, A.; Lintas, C.; Manzi, B.; Mirnics, K.; Persico, A.M. Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol Dis 2008, vol. 30(no. 3), 303–311. [Google Scholar]
- Enstrom, A.; Krakowiak, P.; Onore, C.; Pessah, I. N.; Hertz-Picciotto, I.; Hansen, R. L.; Van de Water, J. A.; Ashwood, P. Increased IgG4 levels in children with autism disorder. Brain Behav Immun 2009, vol. 23(no. 3), 389–95. [Google Scholar] [CrossRef] [PubMed]
- Enstrom, M.; Onore, C. E.; Van de Water, J. A.; Ashwood, P. Differential monocyte responses to TLR ligands in children with autism spectrum disorders. Brain Behav Immun 2010, vol. 24(no. 1), 64–71. [Google Scholar] [CrossRef] [PubMed]
- Ashwood, P.; Schauer, J.; Pessah, I. N.; Van de Water, J. Preliminary evidence of the in vitro effects of BDE-47 on innate immune responses in children with autism spectrum disorders. J Neuroimmunol 2009, vol. 208(no. 1-2), 130–5. [Google Scholar] [CrossRef] [PubMed]
- Ashwood, P.; Krakowiak, P.; Hertz-Picciotto, I.; Hansen, R.; Pessah, I.; Van de Water, J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 2011, vol. 25(no. 1), 40–5. [Google Scholar] [CrossRef]
- Lampiasi, N.; Bonaventura, R.; Deidda, I.; Zito, F.; Russo, R. Inflammation and the Potential Implication of Macrophage-Microglia Polarization in Human ASD: An Overview. Int J Mol Sci 2023, vol. 24(no. 3). [Google Scholar]
- Li, H.; Xu, Y.; Li, W.; Zhang, L.; Zhang, X.; Li, B.; Chen, Y.; Wang, X.; Zhu, C. Novel insights into the immune cell landscape and gene signatures in autism spectrum disorder by bioinformatics and clinical analysis. Front Immunol 2022, vol. 13, pp. 1082950. [Google Scholar]
- Lopez-Cacho, M.; Gallardo, S.; Posada, M.; Aguerri, M.; Calzada, D.; Mayayo, T.; Lahoz, C.; Cardaba, B. Characterization of immune cell phenotypes in adults with autism spectrum disorders. J Investig Med 2016, vol. 64(no. 7), 1179–85. [Google Scholar]
- Chen, H. R.; Chen, C. W.; Mandhani, N.; Short-Miller, J. C.; Smucker, M. R.; Sun, Y. Y.; Kuan, C. Y. Monocytic Infiltrates Contribute to Autistic-like Behaviors in a Two-Hit Model of Neurodevelopmental Defects. J Neurosci 2020, vol. 40(no. 49), 9386–9400. [Google Scholar]
- Nadeem, A.; Ahmad, S. F.; Al-Harbi, N. O.; Attia, S. M.; Bakheet, S. A.; Ibrahim, K. E.; Alqahtani, F.; Alqinyah, M. Nrf2 activator, sulforaphane ameliorates autism-like symptoms through suppression of Th17 related signaling and rectification of oxidant-antioxidant imbalance in periphery and brain of BTBR T+tf/J mice. Behav Brain Res 2019, vol. 364, 213–224. [Google Scholar]
- Xiao, R.; Zhong, H.; Li, X.; Ma, Y.; Zhang, R.; Wang, L.; Zang, Z.; Fan, X. Abnormal Cerebellar Development Is Involved in Dystonia-Like Behaviors and Motor Dysfunction of Autistic BTBR Mice. Front Cell Dev Biol 2020, vol. 8, pp. 231. [Google Scholar] [CrossRef]
- Kwon, A. H.; Zhu, X.; Zhang, J.; Knoop, L. L.; Tharp, R.; Smeyne, R. J.; Eberhart, C. G.; Burger, P. C.; Baker, S. J. Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nat Genet 2001, vol. 29(no. 4), 404–11. [Google Scholar] [CrossRef] [PubMed]
- Ellul, P.; Maruani, A.; Peyre, H.; Vantalon, V.; Hoareau, D.; Tiercelin, H.; Rosenzwajg, M.; Klatzmann, D.; Delorme, R. Abnormal neutrophil-to-lymphocyte ratio in children with autism spectrum disorder and history of maternal immune activation. Sci Rep 2023, vol. 13(no. 1), pp. 22424. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, A.; Ahmad, S. F.; Attia, S. M.; Al-Ayadhi, L. Y.; Al-Harbi, N. O.; Bakheet, S. A. Dysregulated enzymatic antioxidant network in peripheral neutrophils and monocytes in children with autism. Prog Neuropsychopharmacol Biol Psychiatry 2019, vol. 88, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Boris, M.; Kaiser, C.C.; Goldblatt, A.; Elice, M.W.; Edelson, S.M.; Adams, J.B.; Feinstein, D.L. Effect of pioglitazone treatment on behavioral symptoms in autistic children. J Neuroinflammation 2007, vol. 4, pp. 3. [Google Scholar] [CrossRef]
- Asadabadi, M.; Mohammadi, M. R.; Ghanizadeh, A.; Modabbernia, A.; Ashrafi, M.; Hassanzadeh, E.; Forghani, S.; Akhondzadeh, S. Celecoxib as adjunctive treatment to risperidone in children with autistic disorder: a randomized, double-blind, placebo-controlled trial. Psychopharmacology (Berl) 2013, vol. 225(no. 1), 51–9. [Google Scholar] [CrossRef]
- Lim, S.; Lee, S. Chemical Modulators for Targeting Autism Spectrum Disorders: From Bench to Clinic. Molecules 2022, vol. 27(no. 16). [Google Scholar] [CrossRef]
- Jyonouchi, H. Autism spectrum disorder and a possible role of anti-inflammatory treatments: experience in the pediatric allergy/immunology clinic. Front Psychiatry 2024, vol. 15, pp. 1333717. [Google Scholar] [CrossRef]
- Gogolla, N.; Leblanc, J.J.; Quast, K.B.; Südhof, T.C.; Fagiolini, M.; Hensch, T. K. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J Neurodev Disord 2009, vol. 1(no. 2), 172–81. [Google Scholar] [CrossRef]
- Tripathi, M. K.; Ojha, S. K.; Kartawy, M.; Hamoudi, W.; Choudhary, A.; Stern, S.; Aran, A.; Amal, H. The NO Answer for Autism Spectrum Disorder. Adv Sci (Weinh) 2023, vol. 10(no. 22), pp. e2205783. [Google Scholar] [CrossRef]
- Hegarty, J. P., 2nd; Weber, D. J.; Cirstea, C. M.; Beversdorf, D. Q. Cerebro-Cerebellar Functional Connectivity is Associated with Cerebellar Excitation-Inhibition Balance in Autism Spectrum Disorder. J Autism Dev Disord 2018, vol. 48(no. 10), 3460–3473. [Google Scholar] [CrossRef]
- Rubenstein, J. L.; Merzenich, M. M. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2003, vol. 2(no. 5), 255–67. [Google Scholar] [CrossRef]
- Hussman, J. P. Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. J Autism Dev Disord 2001, vol. 31(no. 2), 247–8. [Google Scholar]
- Lee, E.; Lee, J.; Kim, E. Excitation/Inhibition Imbalance in Animal Models of Autism Spectrum Disorders. Biol Psychiatry 2017, vol. 81(no. 10), 838–847. [Google Scholar] [CrossRef] [PubMed]
- Culotta, L.; Penzes, P. Exploring the mechanisms underlying excitation/inhibition imbalance in human iPSC-derived models of ASD. Mol Autism 2020, vol. 11(no. 1), pp. 32. [Google Scholar]
- Canitano, R.; Palumbi, R. Excitation/Inhibition Modulators in Autism Spectrum Disorder: Current Clinical Research. Front Neurosci 2021, vol. 15, pp. 753274. [Google Scholar]
- Leiner, H. C.; Leiner, A. L.; Dow, R. S. Does the cerebellum contribute to mental skills? Behav Neurosci 1986, vol. 100(no. 4), 443–54. [Google Scholar]
- Oberdick, J.; Sillitoe, R. V. Cerebellar zones: history, development, and function. Cerebellum 2011, vol. 10(no. 3), 301–6. [Google Scholar] [CrossRef]
- Prestori, F.; Mapelli, L.; D'Angelo, E. Diverse Neuron Properties and Complex Network Dynamics in the Cerebellar Cortical Inhibitory Circuit. Front Mol Neurosci 2019, vol. 12, pp. 267. [Google Scholar]
- Kandel, E. R. Principles of Neural Science, 5th ed.; McGraw-Hill, 2013. [Google Scholar]
- Voogd, J.; Glickstein, M. The anatomy of the cerebellum. Trends Neurosci 1998, vol. 21(no. 9), 370–5. [Google Scholar]
- Watson, C. The Spinal Cord: A Christopher and Dana Reeve Foundation Text and Atlas; 2009. [Google Scholar]
- Voogd, J.; Barmack, N. H. Oculomotor cerebellum. Prog Brain Res 2006, vol. 151, 231–68. [Google Scholar]
- Ruigrok, J. Ins and outs of cerebellar modules. Cerebellum 2011, vol. 10(no. 3), 464–74. [Google Scholar]
- Ito, M. Error detection and representation in the olivo-cerebellar system. Front Neural Circuits 2013, vol. 7, pp. 1. [Google Scholar]
- Bengtsson, F.; Jorntell, H. Specific relationship between excitatory inputs and climbing fiber receptive fields in deep cerebellar nuclear neurons. PLoS One 2014, vol. 9(no. 1), pp. e84616. [Google Scholar] [CrossRef] [PubMed]
- Snider, R. S.; Maiti, A. Cerebellar contributions to the Papez circuit. J Neurosci Res 1976, vol. 2(no. 2), 133–46. [Google Scholar]
- Anand, K.; Malhotra, C. L.; Singh, B.; Dua, S. Cerebellar projections to limbic system. J Neurophysiol 1959, vol. 22(no. 4), 451–7. [Google Scholar]
- Terburg, T.; van Honk, J.; Schutter, D. Doubling down on dual systems: A cerebellum-amygdala route towards action- and outcome-based social and affective behavior. Cortex 2024, vol. 173, 175–186. [Google Scholar] [CrossRef]
- Froula, J. M.; Hastings, S. D.; Krook-Magnuson, E. The little brain and the seahorse: Cerebellar-hippocampal interactions. Front Syst Neurosci 2023, vol. 17, pp. 1158492. [Google Scholar]
- Morris, J. S.; Frith, C. D.; Perrett, D. I.; Rowland, D.; Young, A. W.; Calder, A. J.; Dolan, R. J. A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 1996, vol. 383(no. 6603), 812–5. [Google Scholar] [CrossRef]
- Ernst, M.; Brol, A. E.; Gratz, M.; Ritter, C.; Bingel, U.; Schlamann, M.; Maderwald, S.; Quick, H. H.; Merz, C. J.; Timmann, D. The cerebellum is involved in processing of predictions and prediction errors in a fear conditioning paradigm. Elife 2019, vol. 8. [Google Scholar] [CrossRef]
- Rogers, T. D.; Dickson, P. E.; Heck, D. H.; Goldowitz, D.; Mittleman, G.; Blaha, C. D. Connecting the dots of the cerebro-cerebellar role in cognitive function: neuronal pathways for cerebellar modulation of dopamine release in the prefrontal cortex. Synapse 2011, vol. 65(no. 11), 1204–12. [Google Scholar] [CrossRef]
- Mittleman, G.; Goldowitz, D.; Heck, D. H.; Blaha, C. D. Cerebellar modulation of frontal cortex dopamine efflux in mice: relevance to autism and schizophrenia. Synapse 2008, vol. 62(no. 7), 544–50. [Google Scholar] [CrossRef]
- Watson, T. C.; Becker, N.; Apps, R.; Jones, M. W. Back to front: cerebellar connections and interactions with the prefrontal cortex. Front Syst Neurosci 2014, vol. 8, pp. 4. [Google Scholar]
- Kelly, R. M.; Strick, P. L. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 2003, vol. 23(no. 23), 8432–44. [Google Scholar]
- Fatemi, S. H.; Stary, J. M.; Halt, A. R.; Realmuto, G. R. Dysregulation of Reelin and Bcl-2 proteins in autistic cerebellum. J Autism Dev Disord 2001, vol. 31(no. 6), 529–35. [Google Scholar] [CrossRef] [PubMed]
- Yip, J.; Soghomonian, J. J.; Blatt, G. J. Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol 2007, vol. 113(no. 5), 559–68. [Google Scholar] [CrossRef]
- Yip, J.; Soghomonian, J. J.; Blatt, G. J. Increased GAD67 mRNA expression in cerebellar interneurons in autism: implications for Purkinje cell dysfunction. J Neurosci Res 2008, vol. 86(no. 3), 525–30. [Google Scholar]
- Chan-Palay, V.; Palay, S.L.; Brown, J.T.; Van Itallie, C. Sagittal organization of olivocerebellar and reticulocerebellar projections: autoradiographic studies with 35S-methionine. Exp Brain Res 1977, vol. 30(no. 4), 561–76. [Google Scholar] [CrossRef]
- R. L. Llinas, E.; Makarenko, V. The Olivo-Cerebellar Circuit as a Universal Motor Control System. IEEE Journal of Oceanic Engineering 2004, vol. 29(no. 3), 631–639. [Google Scholar] [CrossRef]
- Yip, J.; Soghomonian, J. J.; Blatt, G. J. Decreased GAD65 mRNA levels in select subpopulations of neurons in the cerebellar dentate nuclei in autism: an in situ hybridization study. Autism Res 2009, vol. 2(no. 1), 50–9. [Google Scholar]
- Chugani, C.; Muzik, O.; Rothermel, R.; Behen, M.; Chakraborty, P.; Mangner, T.; da Silva, E. A.; Chugani, H. T. Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Ann Neurol 1997, vol. 42(no. 4), 666–9. [Google Scholar] [CrossRef]
- Chugani, D. C. Role of altered brain serotonin mechanisms in autism. Mol Psychiatry 2002, vol. 7 Suppl 2, S16–7. [Google Scholar] [CrossRef]
- Vichier-Guerre, C.; Parker, M.; Pomerantz, Y.; Finnell, R. H.; Cabrera, R. M. Impact of selective serotonin reuptake inhibitors on neural crest stem cell formation. Toxicol Lett 2017, vol. 281, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Fricker, A. D.; Rios, C.; Devi, L. A.; Gomes, I. Serotonin receptor activation leads to neurite outgrowth and neuronal survival. Brain Res Mol Brain Res 2005, vol. 138(no. 2), 228–35. [Google Scholar]
- Khozhai, L. I.; Otellin, V. A. Synaptogenesis in the dorsal raphe nucleus of rat medulla oblongata in serotonin deficiency. Morfologiia 2012, vol. 142(no. 6), 20–4. [Google Scholar]
- Rice, D. S.; Curran, T. Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 2001, vol. 24, 1005–39. [Google Scholar]
- Fatemi, S. H.; Snow, A. V.; Stary, J. M.; Araghi-Niknam, M.; Reutiman, T. J.; Lee, S.; Brooks, A. I.; Pearce, D. A. Reelin signaling is impaired in autism. Biol Psychiatry 2005, vol. 57(no. 7), 777–87. [Google Scholar] [CrossRef]
- Scala, M.; Grasso, E. A.; Di Cara, G.; Riva, A.; Striano, P.; Verrotti, A. The Pathophysiological Link Between Reelin and Autism: Overview and New Insights. Front Genet 2022, vol. 13, pp. 869002. [Google Scholar]
- Mariani, J.; Crepel, F.; Mikoshiba, K.; Changeux, J. P.; Sotelo, C. Anatomical, physiological and biochemical studies of the cerebellum from Reeler mutant mouse. Philos Trans R Soc Lond B Biol Sci 1977, vol. 281(no. 978), 1–28. [Google Scholar]
- Hong, S. E.; Shugart, Y. Y.; Huang, D. T.; Shahwan, S. A.; Grant, P. E.; Hourihane, J. O.; Martin, N. D.; Walsh, C. A. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 2000, vol. 26(no. 1), 93–6. [Google Scholar]
- Parellada, M.; San Jose Caceres, A.; Palmer, M.; Delorme, R.; Jones, E. J. H.; Parr, J. R.; Anagnostou, E.; Murphy, D. G. M.; Loth, E.; Wang, P. P.; Charman, T.; Strydom, A.; Arango, C. A Phase II Randomized, Double-Blind, Placebo-Controlled Study of the Efficacy, Safety, and Tolerability of Arbaclofen Administered for the Treatment of Social Function in Children and Adolescents With Autism Spectrum Disorders: Study Protocol for AIMS-2-TRIALS-CT1. Front Psychiatry 2021, vol. 12, pp. 701729. [Google Scholar]
- Jiang, C. C.; Lin, L. S.; Long, S.; Ke, X. Y.; Fukunaga, K.; Lu, Y. M.; Han, F. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther 2022, vol. 7(no. 1), pp. 229. [Google Scholar] [CrossRef]
- Aguilar-Valles, A.; Matta-Camacho, E.; Khoutorsky, A.; Gkogkas, C.; Nader, K.; Lacaille, J. C.; Sonenberg, N. Inhibition of Group I Metabotropic Glutamate Receptors Reverses Autistic-Like Phenotypes Caused by Deficiency of the Translation Repressor eIF4E Binding Protein 2. J Neurosci 2015, vol. 35(no. 31), 11125–32. [Google Scholar] [CrossRef] [PubMed]
- Carta, I.; Chen, C.H.; Schott, A.L.; Dorizan, S.; Khodakhah, K. Cerebellar modulation of the reward circuitry and social behavior. Science 2019, vol. 363(no. 6424). [Google Scholar] [CrossRef] [PubMed]
- Vacher, C. M.; Lacaille, H.; O'Reilly, J. J.; Salzbank, J.; Bakalar, D.; Sebaoui, S.; Liere, P.; Clarkson-Paredes, C.; Sasaki, T.; Sathyanesan, A.; Kratimenos, P.; Ellegood, J.; Lerch, J. P.; Imamura, Y.; Popratiloff, A.; Hashimoto-Torii, K.; Gallo, V.; Schumacher, M.; Penn, A. A. Placental endocrine function shapes cerebellar development and social behavior. Nat Neurosci 2021, vol. 24(no. 10), 1392–1401. [Google Scholar] [CrossRef]
- Kuemerle, B.; Zanjani, H.; Joyner, A.; Herrup, K. Pattern deformities and cell loss in Engrailed-2 mutant mice suggest two separate patterning events during cerebellar development. J Neurosci 1997, vol. 17(no. 20), 7881–9. [Google Scholar] [CrossRef] [PubMed]
- Brielmaier, J.; Matteson, P. G.; Silverman, J. L.; Senerth, J. M.; Kelly, S.; Genestine, M.; Millonig, J. H.; DiCicco-Bloom, E.; Crawley, J. N. Autism-relevant social abnormalities and cognitive deficits in engrailed-2 knockout mice. PLoS One 2012, vol. 7(no. 7), pp. e40914. [Google Scholar] [CrossRef]
- Ebrahimi-Fakhari, D.; Sahin, M. Autism and the synapse: emerging mechanisms and mechanism-based therapies. Curr Opin Neurol 2015, vol. 28(no. 2), 91–102. [Google Scholar] [CrossRef]
- Wang, H.; Doering, L. C. Reversing autism by targeting downstream mTOR signaling. Front Cell Neurosci 2013, vol. 7, pp. 28. [Google Scholar] [CrossRef]
- Thomas, S. D.; Jha, N. K.; Ojha, S.; Sadek, B. mTOR Signaling Disruption and Its Association with the Development of Autism Spectrum Disorder. Molecules 2023, vol. 28(no. 4). [Google Scholar]
- Katsu, M.; Niizuma, K.; Yoshioka, H.; Okami, N.; Sakata, H.; Chan, P. H. Hemoglobin-induced oxidative stress contributes to matrix metalloproteinase activation and blood-brain barrier dysfunction in vivo. J Cereb Blood Flow Metab 2010, vol. 30(no. 12), 1939–50. [Google Scholar]
- Zhao, Z.; Hu, J.; Gao, X.; Liang, H.; Liu, Z. Activation of AMPK attenuates lipopolysaccharide-impaired integrity and function of blood-brain barrier in human brain microvascular endothelial cells. Exp Mol Pathol 2014, vol. 97(no. 3), 386–92. [Google Scholar]
- Rajapakse, A. G.; Yepuri, G.; Carvas, J. M.; Stein, S.; Matter, C. M.; Scerri, I.; Ruffieux, J.; Montani, J. P.; Ming, X. F.; Yang, Z. Hyperactive S6K1 mediates oxidative stress and endothelial dysfunction in aging: inhibition by resveratrol. PLoS One 2011, vol. 6(no. 4), pp. e19237. [Google Scholar]
- Li, Z.; Jagadapillai, R.; Gozal, E.; Barnes, G. Deletion of Semaphorin 3F in Interneurons Is Associated with Decreased GABAergic Neurons, Autism-like Behavior, and Increased Oxidative Stress Cascades. Mol Neurobiol 2019, vol. 56(no. 8), 5520–5538. [Google Scholar] [CrossRef] [PubMed]
- Ehninger, D.; Han, S.; Shilyansky, C.; Zhou, Y.; Li, W.; Kwiatkowski, D. J.; Ramesh, V.; Silva, A. J. Reversal of learning deficits in a Tsc2+/- mouse model of tuberous sclerosis. Nat Med 2008, vol. 14(no. 8), 843–8. [Google Scholar] [CrossRef] [PubMed]
- Gkogkas, C. G.; Khoutorsky, A.; Ran, I.; Rampakakis, E.; Nevarko, T.; Weatherill, D. B.; Vasuta, C.; Yee, S.; Truitt, M.; Dallaire, P.; Major, F.; Lasko, P.; Ruggero, D.; Nader, K.; Lacaille, J. C.; Sonenberg, N. Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature 2013, vol. 493(no. 7432), 371–7. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; de Theije, C.G.M.; da Silva, S.L.; Abbring, S.; van der Horst, H.; Broersen, L.M.; Willemsen, L.; Kas, M.; Garssen, J.; Kraneveld, A.D. Dietary interventions that reduce mTOR activity rescue autistic-like behavioral deficits in mice. Brain Behav Immun 2017, vol. 59, 273–287. [Google Scholar] [CrossRef]
- Lin, A. L.; Zheng, W.; Halloran, J. J.; Burbank, R. R.; Hussong, S. A.; Hart, M. J.; Javors, M.; Shih, Y. Y.; Muir, E.; Solano Fonseca, R.; Strong, R.; Richardson, A. G.; Lechleiter, J. D.; Fox, P. T.; Galvan, V. Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer's disease. J Cereb Blood Flow Metab 2013, vol. 33(no. 9), 1412–21. [Google Scholar]
- Lin, L.; Jahrling, J. B.; Zhang, W.; DeRosa, N.; Bakshi, V.; Romero, P.; Galvan, V.; Richardson, A. Rapamycin rescues vascular, metabolic and learning deficits in apolipoprotein E4 transgenic mice with pre-symptomatic Alzheimer's disease. J Cereb Blood Flow Metab 2017, vol. 37(no. 1), 217–226. [Google Scholar] [CrossRef]
- Majumder, S.; Caccamo, A.; Medina, D. X.; Benavides, A. D.; Javors, M. A.; Kraig, E.; Strong, R.; Richardson, A.; Oddo, S. Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1beta and enhancing NMDA signaling. Aging Cell 2012, vol. 11(no. 2), 326–35. [Google Scholar]
- Spilman, P.; Podlutskaya, N.; Hart, M. J.; Debnath, J.; Gorostiza, O.; Bredesen, D.; Richardson, A.; Strong, R.; Galvan, V. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. PLoS One 2010, vol. 5(no. 4), pp. e9979. [Google Scholar]
- Van Skike, E.; Jahrling, J. B.; Olson, A. B.; Sayre, N. L.; Hussong, S. A.; Ungvari, Z.; Lechleiter, J. D.; Galvan, V. Inhibition of mTOR protects the blood-brain barrier in models of Alzheimer's disease and vascular cognitive impairment. Am J Physiol Heart Circ Physiol 2018, vol. 314(no. 4), H693–H703. [Google Scholar] [CrossRef] [PubMed]
- Jeste, S. S.; Sahin, M.; Bolton, P.; Ploubidis, G. B.; Humphrey, A. Characterization of autism in young children with tuberous sclerosis complex. J Child Neurol 2008, vol. 23(no. 5), 520–5. [Google Scholar] [CrossRef] [PubMed]
- Ertan, G.; Arulrajah, S.; Tekes, A.; Jordan, L.; Huisman, T. A. Cerebellar abnormality in children and young adults with tuberous sclerosis complex: MR and diffusion weighted imaging findings. J Neuroradiol 2010, vol. 37(no. 4), 231–8. [Google Scholar]
- Weber, A. M.; Egelhoff, J. C.; McKellop, J. M.; Franz, D. N. Autism and the cerebellum: evidence from tuberous sclerosis. J Autism Dev Disord 2000, vol. 30(no. 6), 511–7. [Google Scholar] [CrossRef]
- Eluvathingal, T. J.; Behen, M. E.; Chugani, H. T.; Janisse, J.; Bernardi, B.; Chakraborty, P.; Juhasz, C.; Muzik, O.; Chugani, D. C. Cerebellar lesions in tuberous sclerosis complex: neurobehavioral and neuroimaging correlates. J Child Neurol 2006, vol. 21(no. 10), 846–51. [Google Scholar]
- Tsai, T.; Hull, C.; Chu, Y.; Greene-Colozzi, E.; Sadowski, A. R.; Leech, J. M.; Steinberg, J.; Crawley, J. N.; Regehr, W. G.; Sahin, M. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 2012, vol. 488(no. 7413), 647–51. [Google Scholar] [CrossRef]
- Talkowski, E.; Rosenfeld, J. A.; Blumenthal, I.; Pillalamarri, V.; Chiang, C.; Heilbut, A.; Ernst, C.; Hanscom, C.; Rossin, E.; Lindgren, A. M.; Pereira, S.; Ruderfer, D.; Kirby, A.; Ripke, S.; Harris, D. J.; Lee, J. H.; Ha, K.; Kim, H. G.; Solomon, B. D.; Gropman, A. L.; Lucente, D.; Sims, K.; Ohsumi, T. K.; Borowsky, M. L.; Loranger, S.; Quade, B.; Lage, K.; Miles, J.; Wu, B. L.; Shen, Y.; Neale, B.; Shaffer, L. G.; Daly, M. J.; Morton, C. C.; Gusella, J. F. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 2012, vol. 149(no. 3), 525–37. [Google Scholar] [CrossRef]
- Neale, M.; Kou, Y.; Liu, L.; Ma'ayan, A.; Samocha, K. E.; Sabo, A.; Lin, C. F.; Stevens, C.; Wang, L. S.; Makarov, V.; Polak, P.; Yoon, S.; Maguire, J.; Crawford, E. L.; Campbell, N. G.; Geller, E. T.; Valladares, O.; Schafer, C.; Liu, H.; Zhao, T.; Cai, G.; Lihm, J.; Dannenfelser, R.; Jabado, O.; Peralta, Z.; Nagaswamy, U.; Muzny, D.; Reid, J. G.; Newsham, I.; Wu, Y.; Lewis, L.; Han, Y.; Voight, B. F.; Lim, E.; Rossin, E.; Kirby, A.; Flannick, J.; Fromer, M.; Shakir, K.; Fennell, T.; Garimella, K.; Banks, E.; Poplin, R.; Gabriel, S.; DePristo, M.; Wimbish, J. R.; Boone, B. E.; Levy, S. E.; Betancur, C.; Sunyaev, S.; Boerwinkle, E.; Buxbaum, J. D.; Cook, E. H., Jr.; Devlin, B.; Gibbs, R. A.; Roeder, K.; Schellenberg, G. D.; Sutcliffe, J. S.; Daly, M. J. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012, vol. 485(no. 7397), 242–5. [Google Scholar] [CrossRef]
- Sugathan, A.; Biagioli, M.; Golzio, C.; Erdin, S.; Blumenthal, I.; Manavalan, P.; Ragavendran, A.; Brand, H.; Lucente, D.; Miles, J.; Sheridan, S. D.; Stortchevoi, A.; Kellis, M.; Haggarty, S. J.; Katsanis, N.; Gusella, J. F.; Talkowski, M. E. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proc Natl Acad Sci U S A 2014, vol. 111(no. 42), E4468–77. [Google Scholar]
- Cotney, J.; Muhle, R. A.; Sanders, S. J.; Liu, L.; Willsey, A. J.; Niu, W.; Liu, W.; Klei, L.; Lei, J.; Yin, J.; Reilly, S. K.; Tebbenkamp, A. T.; Bichsel, C.; Pletikos, M.; Sestan, N.; Roeder, K.; State, M. W.; Devlin, B.; Noonan, J. P. The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment. Nat Commun 2015, vol. 6, pp. 6404. [Google Scholar]
- Bernier, R.; Golzio, C.; Xiong, B.; Stessman, H. A.; Coe, B. P.; Penn, O.; Witherspoon, K.; Gerdts, J.; Baker, C.; Vulto-van Silfhout, A. T.; Schuurs-Hoeijmakers, J. H.; Fichera, M.; Bosco, P.; Buono, S.; Alberti, A.; Failla, P.; Peeters, H.; Steyaert, J.; Vissers, L.; Francescatto, L.; Mefford, H. C.; Rosenfeld, J. A.; Bakken, T.; O'Roak, B. J.; Pawlus, M.; Moon, R.; Shendure, J.; Amaral, D. G.; Lein, E.; Rankin, J.; Romano, C.; de Vries, B. B. A.; Katsanis, N.; Eichler, E. E. Disruptive CHD8 mutations define a subtype of autism early in development. Cell 2014, vol. 158(no. 2), 263–276. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, A.; Katayama, Y.; Kakegawa, W.; Ino, D.; Nishiyama, M.; Yuzaki, M.; Nakayama, K. I. The autism-associated protein CHD8 is required for cerebellar development and motor function. Cell Rep 2021, vol. 35(no. 1), pp. 108932. [Google Scholar] [CrossRef] [PubMed]
- Millen, K. J.; Wurst, W.; Herrup, K.; Joyner, A. L. Abnormal embryonic cerebellar development and patterning of postnatal foliation in two mouse Engrailed-2 mutants. Development 1994, vol. 120(no. 3), 695–706. [Google Scholar] [CrossRef] [PubMed]
- Basu, N.; Kollu, R.; Banerjee-Basu, S. AutDB: a gene reference resource for autism research. Nucleic Acids Res 2009, vol. 37, no. Database issue, D832–6. [Google Scholar] [CrossRef]
- Xu, M.; Li, J. R.; Huang, Y.; Zhao, M.; Tang, X.; Wei, L. AutismKB: an evidence-based knowledgebase of autism genetics. Nucleic Acids Res 2012, vol. 40, no. Database issue, D1016–22. [Google Scholar] [CrossRef]
- Cheh, A.; Millonig, J. H.; Roselli, L. M.; Ming, X.; Jacobsen, E.; Kamdar, S.; Wagner, G. C. En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Res 2006, vol. 1116(no. 1), 166–76. [Google Scholar] [CrossRef]
- Boukhtouche, F.; Janmaat, S.; Vodjdani, G.; Gautheron, V.; Mallet, J.; Dusart, I.; Mariani, J. Retinoid-related orphan receptor alpha controls the early steps of Purkinje cell dendritic differentiation. J Neurosci 2006, vol. 26(no. 5), 1531–8. [Google Scholar]
- Gold, A.; Gent, P. M.; Hamilton, B. A. ROR alpha in genetic control of cerebellum development: 50 staggering years. Brain Res 2007, vol. 1140, 19–25. [Google Scholar]
- Shu, W.; Cho, J. Y.; Jiang, Y.; Zhang, M.; Weisz, D.; Elder, G. A.; Schmeidler, J.; De Gasperi, R.; Sosa, M. A.; Rabidou, D.; Santucci, A. C.; Perl, D.; Morrisey, E.; Buxbaum, J. D. Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proc Natl Acad Sci U S A 2005, vol. 102(no. 27), 9643–8. [Google Scholar]
- Fujita, E.; Tanabe, Y.; Shiota, A.; Ueda, M.; Suwa, K.; Momoi, M. Y.; Momoi, T. Ultrasonic vocalization impairment of Foxp2 (R552H) knockin mice related to speech-language disorder and abnormality of Purkinje cells. Proc Natl Acad Sci U S A 2008, vol. 105(no. 8), 3117–22. [Google Scholar]
- Groszer, M.; Keays, D. A.; Deacon, R. M.; de Bono, J. P.; Prasad-Mulcare, S.; Gaub, S.; Baum, M. G.; French, C. A.; Nicod, J.; Coventry, J. A.; Enard, W.; Fray, M.; Brown, S. D.; Nolan, P. M.; Paabo, S.; Channon, K. M.; Costa, R. M.; Eilers, J.; Ehret, G.; Rawlins, J. N.; Fisher, S. E. Impaired synaptic plasticity and motor learning in mice with a point mutation implicated in human speech deficits. Curr Biol 2008, vol. 18(no. 5), 354–62. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Hu, C.; Li, H.; Xu, Z.; Lei, P.; Luo, X.; Hao, Y. JUN and PDGFRA as Crucial Candidate Genes for Childhood Autism Spectrum Disorder. Front Neuroinform 2022, vol. 16, pp. 800079. [Google Scholar] [CrossRef]
- Byrns, C. N.; Perlegos, A. E.; Miller, K. N.; Jin, Z.; Carranza, F. R.; Manchandra, P.; Beveridge, C. H.; Randolph, C. E.; Chaluvadi, V. S.; Zhang, S. L.; Srinivasan, A. R.; Bennett, F. C.; Sehgal, A.; Adams, P. D.; Chopra, G.; Bonini, N. M. Senescent glia link mitochondrial dysfunction and lipid accumulation. Nature 2024, vol. 630(no. 8016), 475–483. [Google Scholar] [CrossRef]
- Liao, B.; Geng, L.; Zhang, F.; Shu, L.; Wei, L.; Yeung, P. K. K.; Lam, K. S. L.; Chung, S. K.; Chang, J.; Vanhoutte, P. M.; Xu, A.; Wang, K.; Hoo, R. L. C. Adipocyte fatty acid-binding protein exacerbates cerebral ischaemia injury by disrupting the blood-brain barrier. Eur Heart J 2020, vol. 41(no. 33), 3169–3180. [Google Scholar] [CrossRef]
- Sathyanesan, A.; Zhou, J.; Scafidi, J.; Heck, D. H.; Sillitoe, R. V.; Gallo, V. Emerging connections between cerebellar development, behaviour and complex brain disorders. Nat Rev Neurosci 2019, vol. 20(no. 5), 298–313. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
