Submitted:
12 January 2026
Posted:
15 January 2026
You are already at the latest version
Abstract
Keywords:
Introduction
2. Materials and Methods
2.1. Materials
2.2. Drug–Polymer Miscibility
2.3. Sample Preparation
2.4. Thermodynamic Properties
2.5. Spectroscopic Measurement
2.6. Water Content with Thermogravimetric Analysis
2.7. Crystalline Properties
2.8. Scanning Electron Microscope (SEM)
2.9. Solubility
2.10. In Vitro Dissolution
2.11. In Vivo Pharmacokinetics
2.12. Statistical Analysis
3. Results and Discussion
3.1. Drug–Polymer Miscibility
3.2. Thermodynamic Evaluation
3.3. Spectroscopic Evaluation
3.4. Effect of Water Content on Stability
3.5. Evaluation of crystallinity
3.6. Scanning Electron Microscope (SEM)
3.7. Solubility
3.8. In Vitro Dissolution
3.9. In Vivo Pharmacokinetics
4. Conclusion
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhujbal, S.V.; Mitra, B.; Jain, U.; Gong, Y.; Agrawal, A.; Karki, S.; Taylor, L.S.; Kumar, S.; Zhou, Q.T. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm. Sin. B 2021, 11, 2505–2536. [Google Scholar] [CrossRef]
- Pandi, P.; Bulusu, R.; Kommineni, N.; Khan, W.; Singh, M. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int. J. Pharm. 2020, 586, 119560. [Google Scholar] [CrossRef]
- Tambe, S.; Jain, D.; Meruva, S.K.; Rongala, G.; Juluri, A.; Nihalani, G.; Mamidi, H.K.; Nukala, P.K.; Bolla, P.K. Recent advances in amorphous solid dispersions: preformulation, formulation strategies, technological advancements and characterization. Pharmaceutics 2022, 14, 2203. [Google Scholar] [CrossRef]
- Martynek, D.; Ridvan, L.; Sivén, M.; Šoóš, M. Stability and recrystallization of amorphous solid dispersions prepared by hot-melt extrusion and spray drying. Int. J. Pharm. 2025, 125331. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Van den Mooter, G. Spray drying formulation of amorphous solid dispersions. Adv. Drug Deliv. Rev. 2016, 100, 27–50. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Tang, M.; Yang, Y.; Sun, W.; Yue, Z.; Zhang, Y.; Zhu, Y.; Liu, X.; Wang, J. Amorphous solid dispersions: Stability mechanism, design strategy and key production technique of hot melt extrusion. Int. J. Pharm. 2023, 646, 123490. [Google Scholar] [CrossRef] [PubMed]
- Mamidi, H.; Palekar, S.; Patel, H.; Nukala, P.K.; Patel, K. Formulation strategies for the development of high drug-loaded amorphous solid dispersions. Drug Discov. Today 2023, 28, 103806. [Google Scholar] [CrossRef]
- Hempel, N.-J.; Brede, K.; Olesen, N.E.; Genina, N.; Knopp, M.M.; Löbmann, K. A fast and reliable DSC-based method to determine the monomolecular loading capacity of drugs with good glass-forming ability in mesoporous silica. Int. J. Pharm. 2018, 544, 153–157. [Google Scholar] [CrossRef]
- Kong, H.; Yu, F.; Liu, Y.; Yang, Y.; Li, M.; Cheng, X.; Hu, X.; Tang, X.; Li, Z.; Mei, X. Development and evaluation of high bioavailable sustained-release nimodipine tablets prepared with monolithic osmotic pump technology. Curr. Drug Deliv. 2018, 15, 44–51. [Google Scholar] [CrossRef]
- Chalikwar, S.S.; Belgamwar, V.S.; Talele, V.R.; Surana, S.J.; Patil, M.U. Formulation and evaluation of nimodipine-loaded solid lipid nanoparticles delivered via lymphatic transport system. Colloids Surf. B. Biointerfaces 2012, 97, 109–116. [Google Scholar] [CrossRef]
- Prajapat, M.D.; Patel, N.J.; Bariya, A.; Patel, S.S.; Butani, S.B. Formulation and evaluation of self-emulsifying drug delivery system for nimodipine, a BCS class II drug. J. Drug Deliv. Sci. Technol. 2017, 39, 59–68. [Google Scholar] [CrossRef]
- Bhatta, H.P.; Han, H.-K.; Maharjan, R.; Jeong, S.H. Recent techniques to improve amorphous dispersion performance with quality design, physicochemical monitoring, molecular simulation, and machine learning. Pharmaceutics 2025, 17, 1249. [Google Scholar] [CrossRef]
- Van Duong, T.; Van den Mooter, G. The role of the carrier in the formulation of pharmaceutical solid dispersions. Part II: Amorphous carriers. Expert Opin. Drug Deliv. 2016, 13, 1681–1694. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, M.; Luo, M.; Cai, T. Advances in the development of amorphous solid dispersions: the role of polymeric carriers. Asian J. Pharm. Sci. 2023, 18, 100834. [Google Scholar] [CrossRef]
- Qian, F.; Huang, J.; Hussain, M.A. Drug–polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J. Pharm. Sci. 2010, 99, 2941–2947. [Google Scholar] [CrossRef] [PubMed]
- Larsen, B.S.; Meiland, P.; Tzdaka, E.; Tho, I.; Rades, T. A unifying approach to drug-in-polymer solubility prediction: Streamlining experimental workflow and analysis. Eur. J. Pharm. Biopharm. 2024, 203, 114478. [Google Scholar] [CrossRef] [PubMed]
- Van Krevelen, D.W.; Te Nijenhuis, K. Properties of polymers: Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions; Elsevier: 2009.
- Simões, M.F.; Pereira, A.; Cardoso, S.; Cadonau, S.; Werner, K.; Pinto, R.M.; Simões, S. Five-stage approach for a systematic screening and development of etravirine amorphous solid dispersions by hot-melt extrusion. Mol. Pharm. 2019, 17, 554–568. [Google Scholar] [CrossRef]
- Verma, S.; Rudraraju, V.S. A systematic approach to design and prepare solid dispersions of poorly water-soluble drug. AAPS PharmSciTech 2014, 15, 641–657. [Google Scholar] [CrossRef]
- Kim, U.-I.; Maharjan, R.; Han, H.-K.; Kim, K.; Jeong, S.H. Formulation development of basroparib as a first-in-class tankyrase inhibitor using a microprecipitated bulk powder approach. J. Pharm. Investig. 2025, 1–11. [Google Scholar] [CrossRef]
- Meiland, P.; Larsen, B.S.; Knopp, M.M.; Tho, I.; Rades, T. A new method to determine drug-polymer solubility through enthalpy of melting and mixing. Int. J. Pharm. 2022, 629, 122391. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Van Duong, T.; Taylor, L.S. Impact of gastric pH variations on the release of amorphous solid dispersion formulations containing a weakly basic drug and enteric polymers. Mol. Pharm. 2023, 20, 1681–1695. [Google Scholar] [CrossRef]
- Yuan, X.; Sperger, D.; Munson, E.J. Investigating miscibility and molecular mobility of nifedipine-PVP amorphous solid dispersions using solid-state NMR spectroscopy. Mol. Pharm. 2014, 11, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Kolisnyk, T.; Mohylyuk, V.; Fil, N.; Bickerstaff, E.; Li, S.; Jones, D.S.; Andrews, G.P. High drug-loaded amorphous solid dispersions of a poor glass forming drug: The impact of polymer type and cooling rate on amorphous drug behaviour. Int. J. Pharm. 2025, 670, 125095. [Google Scholar] [CrossRef]
- Knopp, M.M.; Olesen, N.E.; Holm, P.; Langguth, P.; Holm, R.; Rades, T. Influence of polymer molecular weight on drug-polymer solubility: A comparison between experimentally determined solubility in PVP and prediction derived from solubility in monomer. J. Pharm. Sci. 2015, 104, 2905–2912. [Google Scholar] [CrossRef]
- Mustafa, W.W.; Fletcher, J.; Khoder, M.; Alany, R.G. Solid dispersions of gefitinib prepared by spray drying with improved mucoadhesive and drug dissolution properties. AAPS PharmSciTech 2022, 23, 48. [Google Scholar] [CrossRef]
- Jia, X.; Chen, J.; Cheng, H.; Pan, X.; Ke, Y.; Fu, T.; Qiao, H.; Cui, X.; Li, W.; Zou, L. Use of surfactant-based amorphous solid dispersions for BDDCS class II drugs to enhance oral bioavailability: A case report of resveratrol. Int. J. Pharm. 2023, 641, 123059. [Google Scholar] [CrossRef]
- Zhang, C.; van de Weert, M.; Bjerregaard, S.; Rantanen, J.; Yang, M. Leucine as a moisture-protective excipient in spray-dried protein/trehalose formulation. J. Pharm. Sci. 2024, 113, 2764–2774. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, R.; Park, H.E.; Kim, K.H.; Chaudhary, M.; Kim, K.-T.; Kim, M.; Cho, H.-Y.; Jeong, S.H. Cocrystallization of ezetimibe with organic acids: Stoichiometric optimization for improved solubility and bioavailability. Pharmaceutics 2025, 17, 1399. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, R.; Hattori, Y.; Horie, Y.; Kamada, H.; Nagato, T.; Otsuka, M. Characterization of amorphous solid dispersion of pharmaceutical compound with pH-dependent solubility prepared by continuous-spray granulator. Pharmaceutics 2019, 11, 159. [Google Scholar] [CrossRef]
- Maharjan, R.; Lee, J.C.; Kim, N.A.; Jeong, S.H. Preparation of seeded granules to improve mechanical properties and various drug loading for pharmaceutical application. Powder Technol. 2021, 392, 650–660. [Google Scholar] [CrossRef]
- Yoon, S.-J.; Bak, J.; Yoo, B. Effect of fluidized-bed agglomeration with sugar binders on physical, crystallinity, thermal, and pasting properties of native potato starch. Food Sci. Biotechnol. 2024, 33, 3463–3471. [Google Scholar] [CrossRef]
- Butreddy, A.; Sarabu, S.; Almutairi, M.; Ajjarapu, S.; Kolimi, P.; Bandari, S.; Repka, M.A. Hot-melt extruded hydroxypropyl methylcellulose acetate succinate based amorphous solid dispersions: Impact of polymeric combinations on supersaturation kinetics and dissolution performance. Int. J. Pharm. 2022, 615, 121471. [Google Scholar] [CrossRef]
- Liu, G.; Gong, L.; Zhang, J.; Wu, Z.; Deng, H.; Deng, S. Development of nimesulide amorphous solid dispersions via supercritical anti-solvent process for dissolution enhancement. Eur. J. Pharm. Sci. 2020, 152, 105457. [Google Scholar] [CrossRef]
- Rathod, N.; Borkhataria, C.; Manek, R.; Patel, V.; Patel, N.; Patel, K.; Paun, J.; Sakhiya, D. Study on the correlation between nimodipine (BCS Class II) solubility, dissolution improvement, and brain tissue concentration through cocrystallization. J. Pharm. Innov. 2023, 18, 2235–2248. [Google Scholar] [CrossRef]
- Liu, W.; Wang, X.; Chen, R.; Zhang, K.; Li, Y.; Li, Y.; Si, D.; Gong, J.; Yin, D.; Wang, Y. Effect of age on the pharmacokinetics of polymorphic nimodipine in rats after oral administration. Acta Pharm. Sin. B 2016, 6, 468–474. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, Y.; Zhao, Y.; Ding, Z.; Fan, Z.; Zhang, H.; Liu, M.; Wang, Z.; Han, J. Effect of HPMCAS on recrystallization inhibition of nimodipine solid dispersions prepared by hot-melt extrusion and dissolution enhancement of nimodipine tablets. Colloids Surf. B. Biointerfaces 2018, 172, 118–126. [Google Scholar] [CrossRef]
- Lehmkemper, K.; Kyeremateng, S.O.; Heinzerling, O.; Degenhardt, M.; Sadowski, G. Impact of Polymer Type and Relative Humidity on the Long-Term Physical Stability of Amorphous Solid Dispersions. Mol. Pharm. 2017, 14, 4374–4386. [Google Scholar] [CrossRef] [PubMed]
- Raje, V.; Lu, I.; Keir, R.S.; Serajuddin, A.T. Development of indomethacin amorphous solid dispersion by applying acid-base supersolubilization (ABS) principle to enhance solubility and enable low-temperature hot melt extrusion. Int. J. Pharm. 2025, 126405. [Google Scholar] [CrossRef] [PubMed]
- Calvo, N.L.; Balzaretti, N.M.; Antonio, M.; Kaufman, T.S.; Maggio, R.M. Chemometrics-assisted study of the interconversion between the crystalline forms of nimodipine. J. Pharm. Biomed. Anal. 2018, 158, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Han, M.; Zhang, H.; Zhang, T.; Tian, H.; Yang, T.; Liu, T. Effect of PVP and HPMC on production of indomethacin amorphous nanoparticles: experiments and molecular dynamics simulations. Drug. Dev. Ind. Pharm. 2025, 51, 622–633. [Google Scholar] [CrossRef]
- Docoslis, A.; Huszarik, K.L.; Papageorgiou, G.Z.; Bikiaris, D.; Stergiou, A.; Georgarakis, E. Characterization of the distribution, polymorphism, and stability of nimodipine in its solid dispersions in polyethylene glycol by micro-Raman spectroscopy and powder X-ray diffraction. AAPS J. 2007, 9, 43. [Google Scholar] [CrossRef] [PubMed]
- Albadarin, A.B.; Potter, C.B.; Davis, M.T.; Iqbal, J.; Korde, S.; Pagire, S.; Paradkar, A.; Walker, G. Development of stability-enhanced ternary solid dispersions via combinations of HPMCP and Soluplus® processed by hot melt extrusion. Int. J. Pharm. 2017, 532, 603–611. [Google Scholar] [CrossRef] [PubMed]
- S’ari, M.; Blade, H.; Cosgrove, S.; Drummond-Brydson, R.; Hondow, N.; Hughes, L.P.; Brown, A. Characterization of amorphous solid dispersions and identification of low levels of crystallinity by transmission electron microscopy. Mol. Pharm. 2021, 18, 1905–1919. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Mann, A.K.P.; Zhang, D.; Yang, Z. Processing Impact on In Vitro and In Vivo Performance of Solid Dispersions—A Comparison between Hot-Melt Extrusion and Spray Drying. Pharmaceutics 2021, 13, 1307. [Google Scholar] [CrossRef]









| Mixture | w1 | Tg1 (K) | w2 | Tg2 (K) | w1×Tg1 | w2×Tg2 | w1×Tg1+k∙w2×Tg2 | w1 + k∙w2 | Tg mix (K) | Tg mix (°C) |
|---|---|---|---|---|---|---|---|---|---|---|
| NIM.HP.PM | 0.25 | 398.15 | 0.75 | 381.15 | 99.54 | 285.86 | 385.4 | 1.07 | 360.19 | 87.037 |
| NIM.AS.PM | 0.25 | 398.15 | 0.75 | 393.15 | 99.54 | 294.86 | 394.4 | 1.09 | 361.83 | 88.685 |
| NIM.CP.PM | 0.25 | 398.15 | 0.75 | 406.15 | 99.54 | 304.61 | 404.15 | 1.09 | 370.78 | 97.630 |
| NIM.PK.PM | 0.25 | 398.15 | 0.75 | 383.15 | 99.54 | 287.36 | 386.9 | 1.08 | 358.24 | 85.091 |
| ASDs | R |
|
|
|
|
||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| NIM.HP.SM | 0.011 | 0.008 | 8.314 | 90.48 | 0.092 | 0.25 | 1.333 | –0.333 | 0.75 | –0.602 | –1.636294 36112 |
0.5625 | –0.1503 55342 |
0.0986 68505 |
0.0353 64656 |
| NIM.AS.SM | 0.011 | 0.008 | 8.314 | 90.48 | 0.092 | 0.25 | 1.333 | –0.333 | 0.75 | –0.602 | –1.636294 36112 |
0.5625 | –0.1503 55342 |
0.0986 68505 |
0.0332 00883 |
| NIM.CP.SM | 0.010 | 0.008 | 8.314 | 90.48 | 0.092 | 0.25 | 1.333 | –0.333 | 0.75 | –0.602 | –1.636294 36112 |
0.5625 | –0.1503 55342 |
0.0986 68505 |
0.0227 30379 |
| NIM.PK.SM | 0.012 | 0.008 | 8.314 | 90.48 | 0.092 | 0.25 | 1.333 | –0.333 | 0.75 | –0.602 | –1.636294 36112 |
0.5625 | –0.1503 55342 |
0.0986 68505 |
0.038 02794 |
| Drug/polymer | Hansen solubility parameter (MPa0.5) |
∆ (MPa 0.5) (polymer–drug) |
|---|---|---|
| NIM | 21.89 | – |
| HPC LS–21 | 22.11 | 0.22 |
| HPMCAS MG | 23.62 | 1.73 |
| HPMCP HP–50 | 25.10 | 3.21 |
| PVP K–25 | 25.12 | 3.23 |
| Solid dispersions | Thermodynamic events (°C) | ||
|---|---|---|---|
| Onset | Tg/Tm | Endset | |
| NIM | – | 124.92 | – |
| NIM.HP.SM | 100.67 | 104.20 | 109.29 |
| NIM.AS.SM | 81.92 | 83.35 | 88.51 |
| NIM.CP.SM | 84.96 | 86.35 | 95.10 |
| NIM.PK.SM | 104.13 | 109.17 | 115.61 |
| NIM.HP.HM | 102.55 | 104.09 | 105.09 |
| NIM.AS.HM | 104.91 | 107.02 | 108.83 |
| NIM.CP.HM | 101.79 | 110.13 | 112.83 |
| NIM.PK.HM | 73.95 | 75.42 | 94.53 |
| Functional group | NIM (cm−1) |
NIM.HP.SM (cm−1) |
NIM.AS.SM (cm−1) |
NIM.CP.SM (cm−1) |
NIM.PK.SM (cm−1) |
NIM.HP.HM (cm−1) |
NIM.AS.HM (cm−1) |
NIM.CP.HM (cm−1) |
NIM.PK.HM (cm−1) |
|---|---|---|---|---|---|---|---|---|---|
| N–H | 3292 | – | – | – | – | – | – | – | – |
| C–H | 2983 | 2970 | 2955 | 2935 | 2938 | 2971 | 2980 | 2978 | 2982 |
| C=O | 1691 | 1694 | 1737 | 1725 | 1653 | 1696 | 1735 | 1697 | 1650 |
| C=C | 1647 | 1649 | 1694 | 1696 | 1522 | 1644 | 1696 | 1644 | 1526 |
| CH3 | 1345 | 1348 | 1347 | 1351 | 1350 | 1349 | 1351 | 1349 | 1347 |
| Group | Solid dispersions | Half life (h) |
Tmax (h) |
Cmax (ng/mL) |
AUC0–24 (ng∙h/mL) |
AUC0–∞ (ng∙h/mL)) |
|---|---|---|---|---|---|---|
| 1 | Nimodipine | 15.50 ± 6.12 | 3.13 ± 3.01 | 74.93 ± 10.23 | 332.50 ± 120.21 | 428.10 ± 325.61 |
| 2 | Physical mixture | 7.47 ± 3.56 | 1.00 ± 0.41 | 73.62 ± 75.95 | 174.75 ± 50.65 | 218.08 ± 150.12 |
| 3 | NIM.CP.SM | 16.09 ± 15.03 | 0.25 ± 0.12 | 2480.80 ± 1629.26 | 4672.92 ± 3395.65 | 6545.04 ± 531.65 |
| 4 | NIM.CP.HM | 30.32 ± 33.40 | 0.31 ± 0.13 | 777.56 ± 1448.63 | 2546.46 ± 651.58 | 7128.17 ± 4760.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
