Submitted:
13 January 2026
Posted:
14 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Identifying ISGs: Transcriptomics Studies
3. Antiviral Mechanisms of Conserved ISGs across Teleost and Mammals
3.1. IFIT1
3.2. Mx
3.3. Nmi and IFP35
3.4. Viperin
3.5. TRIM Ubiquitin E3 Ligases
3.5.1. TRIM25
3.5.2. Fish-specific finTRIMs
3.6. ISGylation
3.6.1. ISG15
3.6.2. HERCs as ISG15 ligases
4. Conclusion and Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Isaacs, A.; Lindenmann, J. Virus Interference. I. The Interferon. Journal of Interferon Research 1957, 7, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.N.; Gan, Z.; Hou, J.; Yang, Y.C.; Huang, L.; Huang, B.; Wang, S.; Nie, P. Identification and Establishment of Type IV Interferon and the Characterization of Interferon-υ Including Its Class II Cytokine Receptors IFN-υR1 and IL-10R2. Nat Commun 2022, 13, 999. [Google Scholar] [CrossRef] [PubMed]
- Lazear, H.M.; Schoggins, J.W.; Diamond, M.S. Shared and Distinct Functions of Type I and Type III Interferons. Immunity 2019, 50, 907–923. [Google Scholar] [CrossRef]
- Mesev, E.V.; LeDesma, R.A.; Ploss, A. Decoding Type I and III Interferon Signalling during Viral Infection. Nat Microbiol 2019, 4, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Schneider, W.M.; Chevillotte, M.D.; Rice, C.M. Interferon-Stimulated Genes: A Complex Web of Host Defenses. Annu. Rev. Immunol. 2014, 32, 513–545. [Google Scholar] [CrossRef]
- Schoggins, J.W. Interferon-Stimulated Genes: What Do They All Do? Annual Review of Virology 2019, 6, 567–584. [Google Scholar] [CrossRef]
- Li, M.M.H.; MacDonald, M.R.; Rice, C.M. To Translate, or Not to Translate: Viral and Host mRNA Regulation by Interferon-Stimulated Genes. Trends in Cell Biology 2015, 25, 320–329. [Google Scholar] [CrossRef]
- Yang, E.; Li, M.M.H. All About the RNA: Interferon-Stimulated Genes That Interfere With Viral RNA Processes. Front. Immunol. 2020, 11. [Google Scholar] [CrossRef]
- Ivashkiv, L.B.; Donlin, L.T. Regulation of Type I Interferon Responses. Nat Rev Immunol 2014, 14, 36–49. [Google Scholar] [CrossRef]
- Arimoto, K.-I.; Miyauchi, S.; Stoner, S.A.; Fan, J.-B.; Zhang, D.-E. Negative Regulation of Type I IFN Signaling. J Leukoc Biol. 2018, 103, 1099–1116. [Google Scholar] [CrossRef]
- Crosse, K.M.; Monson, E.A.; Beard, M.R.; Helbig, K.J. Interferon-Stimulated Genes as Enhancers of Antiviral Innate Immune Signaling. J Innate Immun 2018, 10, 85–93. [Google Scholar] [CrossRef] [PubMed]
- De Zoysa, M.; Kang, H.-S.; Song, Y.-B.; Jee, Y.; Lee, Y.-D.; Lee, J. First Report of Invertebrate Mx: Cloning, Characterization and Expression Analysis of Mx cDNA in Disk Abalone (Haliotis Discus Discus). Fish & Shellfish Immunology 2007, 23, 86–96. [Google Scholar] [CrossRef]
- Qiao, X.; Wang, L.; Song, L. The Primitive Interferon-like System and Its Antiviral Function in Molluscs. Developmental & Comparative Immunology 2021, 118, 103997. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhao, B.-R.; Zhang, H.; You, Y.-L.; Li, F.; Wang, X.-W. Interferon Functional Analog Activates Antiviral Jak/Stat Signaling through Integrin in an Arthropod. Cell Reports 2021, 36. [Google Scholar] [CrossRef]
- Nakatani, Y.; Takeda, H.; Kohara, Y.; Morishita, S. Reconstruction of the Vertebrate Ancestral Genome Reveals Dynamic Genome Reorganization in Early Vertebrates. Genome Res. 2007, 17, 1254–1265. [Google Scholar] [CrossRef] [PubMed]
- Secombes, C.J.; Zou, J. Evolution of Interferons and Interferon Receptors. Front. Immunol. 2017, 8. [Google Scholar] [CrossRef]
- Redmond, A.K.; Zou, J.; Secombes, C.J.; Macqueen, D.J.; Dooley, H. Discovery of All Three Types in Cartilaginous Fishes Enables Phylogenetic Resolution of the Origins and Evolution of Interferons. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef]
- Smith, N.C.; Rise, M.L.; Christian, S.L. A Comparison of the Innate and Adaptive Immune Systems in Cartilaginous Fish, Ray-Finned Fish, and Lobe-Finned Fish. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef]
- Volff, J.-N. Genome Evolution and Biodiversity in Teleost Fish. Heredity 2005, 94, 280–294. [Google Scholar] [CrossRef]
- Panopoulou, G.; Poustka, A. Timing and Mechanism of Ancient Vertebrate Genome Duplications – the Adventure of a Hypothesis. Trends in Genetics 2005. [Google Scholar] [CrossRef]
- Near, T.J.; Eytan, R.I.; Dornburg, A.; Kuhn, K.L.; Moore, J.A.; Davis, M.P.; Wainwright, P.C.; Friedman, M.; Smith, W.L. Resolution of Ray-Finned Fish Phylogeny and Timing of Diversification. Proceedings of the National Academy of Sciences 2012, 109, 13698–13703. [Google Scholar] [CrossRef] [PubMed]
- Berthelot, C.; Brunet, F.; Chalopin, D.; Juanchich, A.; Bernard, M.; Noël, B.; Bento, P.; Da Silva, C.; Labadie, K.; Alberti, A.; et al. The Rainbow Trout Genome Provides Novel Insights into Evolution after Whole-Genome Duplication in Vertebrates. Nat Commun 2014, 5, 3657. [Google Scholar] [CrossRef] [PubMed]
- Omori, Y.; Kon, T. Goldfish: An Old and New Model System to Study Vertebrate Development, Evolution and Human Disease. J Biochem 2019, 165, 209–218. [Google Scholar] [CrossRef]
- Van de Peer, Y.; Mizrachi, E.; Marchal, K. The Evolutionary Significance of Polyploidy. Nat Rev Genet 2017, 18, 411–424. [Google Scholar] [CrossRef]
- Zhang, Y.-B.; Gui, J.-F. Molecular Regulation of Interferon Antiviral Response in Fish. Developmental & Comparative Immunology 2012, 38, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Langevin, C.; Aleksejeva, E.; Passoni, G.; Palha, N.; Levraud, J.-P.; Boudinot, P. The Antiviral Innate Immune Response in Fish: Evolution and Conservation of the IFN System. Journal of Molecular Biology 2013, 425, 4904–4920. [Google Scholar] [CrossRef]
- Poynter, S.J.; DeWitte-Orr, S.J. Fish Interferon-Stimulated Genes: The Antiviral Effectors. Developmental & Comparative Immunology 2016, 65, 218–225. [Google Scholar] [CrossRef]
- FAO The State of World Fisheries and Aquaculture 2024. Blue Transformation in Action; The State of World Fisheries and Aquaculture (SOFIA); FAO: Rome, Italy, 2024; ISBN 978-92-5-138763-4. [Google Scholar]
- Lafferty, K.D.; Harvell, C.D.; Conrad, J.M.; Friedman, C.S.; Kent, M.L.; Kuris, A.M.; Powell, E.N.; Rondeau, D.; Saksida, S.M. Infectious Diseases Affect Marine Fisheries and Aquaculture Economics. Annual Review of Marine Science 2015, 7, 471–496. [Google Scholar] [CrossRef]
- Kibenge, F.S. Emerging Viruses in Aquaculture. Current Opinion in Virology 2019, 34, 97–103. [Google Scholar] [CrossRef]
- Costa, V.A.; Holmes, E.C. Diversity, Evolution, and Emergence of Fish Viruses. Journal of Virology 2024, 98, e00118-24. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, Y.; Hu, C. PKZ, a Fish-Unique eIF2α Kinase Involved in Innate Immune Response. Front. Immunol. 2020, 11. [Google Scholar] [CrossRef]
- Chaumont, L.; Collet, B.; Boudinot, P. Double-Stranded RNA-Dependent Protein Kinase (PKR) in Antiviral Defence in Fish and Mammals. Developmental & Comparative Immunology 2023, 145, 104732. [Google Scholar] [CrossRef]
- Ortega-Villaizan, M. del M.; Chico, V.; Perez, L. Fish Innate Immune Response to Viral Infection—An Overview of Five Major Antiviral Genes. Viruses 2022, 14, 1546. [Google Scholar] [CrossRef] [PubMed]
- Staeheli, P.; Yu, Y.-X.; Grob, R.; Haller, O. A Double-Stranded RNA-Inducible Fish Gene Homologous to the Murine Influenza Virus Resistance Gene Mx. Molecular and Cellular Biology 1989, 9, 3117–3121. [Google Scholar] [CrossRef]
- Boudinot, P.; Massin, P.; Blanco, M.; Riffault, S.; Benmansour, A. Vig-1, a New Fish Gene Induced by the Rhabdovirus Glycoprotein, Has a Virus-Induced Homologue in Humans and Shares Conserved Motifs with the MoaA Family. J Virol 1999, 73, 1846–1852. [Google Scholar] [CrossRef]
- O’Farrell, C.; Vaghefi, N.; Cantonnet, M.; Buteau, B.; Boudinot, P.; Benmansour, A. Survey of Transcript Expression in Rainbow Trout Leukocytes Reveals a Major Contribution of Interferon-Responsive Genes in the Early Response to a Rhabdovirus Infection. Journal of Virology 2002, 76, 8040–8049. [Google Scholar] [CrossRef] [PubMed]
- Fujiki, K.; Gauley, J.; Bols, N.; Dixon, B. Cloning and Characterization of cDNA Clones Encoding CD9 from Atlantic Salmon (Salmo Salar) and Rainbow Trout (Oncorhynchus Mykiss). Immunogenetics 2002, 54, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Seppola, M.; Stenvik, J.; Steiro, K.; Solstad, T.; Robertsen, B.; Jensen, I. Sequence and Expression Analysis of an Interferon Stimulated Gene (ISG15) from Atlantic Cod (Gadus Morhua L.). Developmental & Comparative Immunology 2007, 31, 156–171. [Google Scholar] [CrossRef]
- Verrier, E.R.; Langevin, C.; Benmansour, A.; Boudinot, P. Early Antiviral Response and Virus-Induced Genes in Fish. Developmental & Comparative Immunology 2011, 35, 1204–1214. [Google Scholar] [CrossRef]
- Milev-Milovanovic, I.; Majji, S.; Thodima, V.; Deng, Y.; Hanson, L.; Arnizaut, A.; Waldbieser, G.; Chinchar, V.G. Identification and Expression Analyses of Poly [I:C]-Stimulated Genes in Channel Catfish (Ictalurus Punctatus). Fish & Shellfish Immunology 2009, 26, 811–820. [Google Scholar] [CrossRef]
- Workenhe, S.T.; Hori, T.S.; Rise, M.L.; Kibenge, M.J.T.; Kibenge, F.S.B. Infectious Salmon Anaemia Virus (ISAV) Isolates Induce Distinct Gene Expression Responses in the Atlantic Salmon (Salmo Salar) Macrophage/Dendritic-like Cell Line TO, Assessed Using Genomic Techniques. Molecular Immunology 2009, 46, 2955–2974. [Google Scholar] [CrossRef]
- Briolat, V.; Jouneau, L.; Carvalho, R.; Palha, N.; Langevin, C.; Herbomel, P.; Schwartz, O.; Spaink, H.P.; Levraud, J.-P.; Boudinot, P. Contrasted Innate Responses to Two Viruses in Zebrafish: Insights into the Ancestral Repertoire of Vertebrate IFN-Stimulated Genes. The Journal of Immunology 2014, 192, 4328–4341. [Google Scholar] [CrossRef]
- Liu, P.; Wang, L.; Kwang, J.; Yue, G.H.; Wong, S.-M. Transcriptome Analysis of Genes Responding to NNV Infection in Asian Seabass Epithelial Cells. Fish & Shellfish Immunology 2016, 54, 342–352. [Google Scholar] [CrossRef]
- Miller, K.M.; Günther, O.P.; Li, S.; Kaukinen, K.H.; Ming, T.J. Molecular Indices of Viral Disease Development in Wild Migrating Salmon. Conserv Physiol 2017, 5, cox036. [Google Scholar] [CrossRef] [PubMed]
- Krasnov, A.; Johansen, L.-H.; Karlsen, C.; Sveen, L.; Ytteborg, E.; Timmerhaus, G.; Lazado, C.C.; Afanasyev, S. Transcriptome Responses of Atlantic Salmon (Salmo Salar L.) to Viral and Bacterial Pathogens, Inflammation, and Stress. Front. Immunol. 2021, 12. [Google Scholar] [CrossRef]
- Wang, X.; Chen, D.; Lv, Z.; Zhao, X.; Ding, C.; Liu, Y.; Xiao, T. Transcriptomics Analysis Provides New Insights into the Fish Antiviral Mechanism and Identification of Interferon-Stimulated Genes in Grass Carp (Ctenopharyngodon Idella). Molecular Immunology 2022, 148, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Levraud, J.-P.; Jouneau, L.; Briolat, V.; Laghi, V.; Boudinot, P. IFN-Stimulated Genes in Zebrafish and Humans Define an Ancient Arsenal of Antiviral Immunity. J Immunol 2019, 203, 3361–3373. [Google Scholar] [CrossRef]
- Blasweiler, A.; Megens, H.-J.; Goldman, M.R.G.; Tadmor-Levi, R.; Lighten, J.; Groenen, M.A.M.; Dirks, R.P.; Jansen, H.J.; Spaink, H.P.; David, L.; et al. Symmetric Expression of Ohnologs Encoding Conserved Antiviral Responses in Tetraploid Common Carp Suggest Absence of Subgenome Dominance after Whole Genome Duplication. Genomics 2023, 115, 110723. [Google Scholar] [CrossRef]
- Clark, T.C.; Naseer, S.; Gundappa, M.K.; Laurent, A.; Perquis, A.; Collet, B.; Macqueen, D.J.; Martin, S.A.M.; Boudinot, P. Conserved and Divergent Arms of the Antiviral Response in the Duplicated Genomes of Salmonid Fishes. Genomics 2023, 115, 110663. [Google Scholar] [CrossRef] [PubMed]
- Naseer, S.; Clark, T.C.; Collet, B.; Dewari, P.; Baranasic, D.; Macqueen, D.J.; Boudinot, P.; Martin, S.A.M. Genomic Regulatory Landscape Underlying the Antiviral Response of Atlantic Salmon. Genome Res. 2025, gr.280579.125. [Google Scholar] [CrossRef]
- Tamura, T.; Ozato, K. Review: ICSBP/IRF-8: Its Regulatory Roles in the Development of Myeloid Cells. Journal of Interferon & Cytokine Research 2002, 22, 145–152. [Google Scholar] [CrossRef]
- Fensterl, V.; Sen, G.C. The ISG56/IFIT1 Gene Family. Journal of Interferon & Cytokine Research 2011, 31, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Y.-B.; Liu, T.-K.; Gui, J.-F. Lineage-Specific Expansion of IFIT Gene Family: An Insight into Coevolution with IFN Gene Family. PLOS ONE 2013, 8, e66859. [Google Scholar] [CrossRef] [PubMed]
- Diamond, M.S.; Farzan, M. The Broad-Spectrum Antiviral Functions of IFIT and IFITM Proteins. Nat Rev Immunol 2013, 13, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Vladimer, G.I.; Górna, M.W.; Superti-Furga, G. IFITs: Emerging Roles as Key Anti-Viral Proteins. Front. Immunol. 2014, 5. [Google Scholar] [CrossRef]
- Diamond, M.S. IFIT1: A Dual Sensor and Effector Molecule That Detects Non-2′-O Methylated Viral RNA and Inhibits Its Translation. Cytokine & Growth Factor Reviews 2014, 25, 543–550. [Google Scholar] [CrossRef]
- Mears, H.V.; Sweeney, T.R. Better Together: The Role of IFIT Protein–Protein Interactions in the Antiviral Response. Journal of General Virology 2018, 99, 1463–1477. [Google Scholar] [CrossRef]
- Reynaud, J.M.; Kim, D.Y.; Atasheva, S.; Rasalouskaya, A.; White, J.P.; Diamond, M.S.; Weaver, S.C.; Frolova, E.I.; Frolov, I. IFIT1 Differentially Interferes with Translation and Replication of Alphavirus Genomes and Promotes Induction of Type I Interferon. PLOS Pathogens 2015, 11, e1004863. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, C.; Xue, P.; Zhong, B.; Mao, A.-P.; Ran, Y.; Chen, H.; Wang, Y.-Y.; Yang, F.; Shu, H.-B. ISG56 Is a Negative-Feedback Regulator of Virus-Triggered Signaling and Cellular Antiviral Response. Proceedings of the National Academy of Sciences 2009, 106, 7945–7950. [Google Scholar] [CrossRef]
- Varela, M.; Diaz-Rosales, P.; Pereiro, P.; Forn-Cuní, G.; Costa, M.M.; Dios, S.; Romero, A.; Figueras, A.; Novoa, B. Interferon-Induced Genes of the Expanded IFIT Family Show Conserved Antiviral Activities in Non-Mammalian Species. PLOS ONE 2014, 9, e100015. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Liu, Z.; Zheng, J.; Huang, Y.; Huang, X.; Qin, Q. Grouper IFIT1 Inhibits Iridovirus and Nodavirus Infection by Positively Regulating Interferon Response. Fish & Shellfish Immunology 2019, 94, 81–89. [Google Scholar] [CrossRef]
- Haller, O.; Staeheli, P.; Schwemmle, M.; Kochs, G. Mx GTPases: Dynamin-like Antiviral Machines of Innate Immunity. Trends in Microbiology 2015, 23, 154–163. [Google Scholar] [CrossRef]
- Langley, C.A.; Dietzen, P.A.; Emerman, M.; Tenthorey, J.L.; Malik, H.S. Antiviral Mx Proteins Have an Ancient Origin and Widespread Distribution among Eukaryotes. Proceedings of the National Academy of Sciences 2025, 122, e2416811122. [Google Scholar] [CrossRef] [PubMed]
- Robertsen, B.; Greiner-Tollersrud, L.; Jørgensen, L.G. Analysis of the Atlantic Salmon Genome Reveals a Cluster of Mx Genes That Respond More Strongly to IFN Gamma than to Type I IFN. Developmental & Comparative Immunology 2019, 90, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Liu, F.; Tian, G.; Secombes, C.J.; Wang, T. Lineage/Species-Specific Expansion of the Mx Gene Family in Teleosts: Differential Expression and Modulation of Nine Mx Genes in Rainbow Trout Oncorhynchus Mykiss. Fish & Shellfish Immunology 2019, 90, 413–430. [Google Scholar] [CrossRef]
- Kochs, G.; Haener, M.; Aebi, U.; Haller, O. Self-Assembly of Human MxA GTPase into Highly Ordered Dynamin-like Oligomers*. Journal of Biological Chemistry 2002, 277, 14172–14176. [Google Scholar] [CrossRef]
- von der Malsburg, A.; Abutbul-Ionita, I.; Haller, O.; Kochs, G.; Danino, D. Stalk Domain of the Dynamin-like MxA GTPase Protein Mediates Membrane Binding and Liposome Tubulation via the Unstructured L4 Loop*. Journal of Biological Chemistry 2011, 286, 37858–37865. [Google Scholar] [CrossRef]
- Fricke, T.; White, T.E.; Schulte, B.; de Souza Aranha Vieira, D.A.; Dharan, A.; Campbell, E.M.; Brandariz-Nuñez, A.; Diaz-Griffero, F. MxB Binds to the HIV-1 Core and Prevents the Uncoating Process of HIV-1. Retrovirology 2014, 11, 68. [Google Scholar] [CrossRef]
- Kochs, G.; Haller, O. Interferon-Induced Human MxA GTPase Blocks Nuclear Import of Thogoto Virus Nucleocapsids. Proceedings of the National Academy of Sciences 1999, 96, 2082–2086. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Killip, M.J.; Staeheli, P.; Randall, R.E.; Jackson, D. The Human Interferon-Induced MxA Protein Inhibits Early Stages of Influenza A Virus Infection by Retaining the Incoming Viral Genome in the Cytoplasm. Journal of Virology 2013, 87, 13053–13058. [Google Scholar] [CrossRef]
- Kochs, G.; Janzen, C.; Hohenberg, H.; Haller, O. Antivirally Active MxA Protein Sequesters La Crosse Virus Nucleocapsid Protein into Perinuclear Complexes. Proceedings of the National Academy of Sciences 2002, 99, 3153–3158. [Google Scholar] [CrossRef]
- Verhelst, J.; Parthoens, E.; Schepens, B.; Fiers, W.; Saelens, X. Interferon-Inducible Protein Mx1 Inhibits Influenza Virus by Interfering with Functional Viral Ribonucleoprotein Complex Assembly. Journal of Virology 2012, 86, 13445–13455. [Google Scholar] [CrossRef]
- Li, L.; Chen, S.N.; Laghari, Z.A.; Huo, H.J.; Hou, J.; Huang, L.; Li, N.; Nie, P. Myxovirus Resistance (Mx) Gene and Its Differential Expression Regulated by Three Type I and Two Type II IFNs in Mandarin Fish, Siniperca Chuatsi. Developmental & Comparative Immunology 2020, 105, 103604. [Google Scholar] [CrossRef]
- Saxena, A.; Belwal, K.; Chauhan, A.; Pande, A. Interferon Induced Mx Protein from Indian Snow Trout Schizothorax Richardsonii (Gray) Lacks Critical Functional Features Unlike Its Mammalian Homologues. Computational Biology and Chemistry 2018, 73, 31–40. [Google Scholar] [CrossRef]
- Mitchell, P.S.; Patzina, C.; Emerman, M.; Haller, O.; Malik, H.S.; Kochs, G. Evolution-Guided Identification of Antiviral Specificity Determinants in the Broadly Acting Interferon-Induced Innate Immunity Factor MxA. Cell Host & Microbe 2012, 12, 598–604. [Google Scholar] [CrossRef]
- Ming, J.; Zhou, R.; Wu, X.; Gao, Y.; Yin, Y.; Fan, W.; Tan, J.; Song, X. Characterization of Myxovirus Resistance (Mx) Gene from Chinese Seabass Lateolabrax Maculatus: Insights into the Evolution and Function of Mx Genes. Fish & Shellfish Immunology 2024, 152, 109749. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, Y.; Yang, K.; Chen, Z.; Sun, N.; Wang, G. Mx of Sebastes Schlegelii: Expression Pattern, Antibacterial Activity and Antiviral Mechanism. Developmental & Comparative Immunology 2025, 167, 105374. [Google Scholar] [CrossRef]
- Fan, C.; Su, H.; Liao, Z.; Su, J.; Yang, C.; Zhang, Y.; Su, J. Teleost-Specific MxG, a Traitor in the Mx Family, Negatively Regulates Antiviral Responses by Targeting IPS-1 for Proteasomal Degradation and STING for Lysosomal Degradation. J Immunol 2021, 207, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.D.; Chen, J.; Shpall, R.L.; Naumovski, L. Subcellular Localization of Interferon-Inducible Myc/Stat-Interacting Protein Nmi Is Regulated by a Novel IFP 35 Homologous Domain. Journal of Interferon & Cytokine Research 1999, 19, 1245–1252. [Google Scholar] [CrossRef]
- Pruitt, H.C.; Devine, D.J.; Samant, R.S. Roles of N-Myc and STAT Interactor in Cancer: From Initiation to Dissemination. International Journal of Cancer 2016, 139, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yang, W.; Liu, R.; Geng, Y.; Qiao, W.; Tan, J. N-Myc Interactor Inhibits Prototype Foamy Virus by Sequestering Viral Tas Protein in the Cytoplasm. Journal of Virology 2014, 88, 7036–7044. [Google Scholar] [CrossRef]
- Wang, J.; Yang, B.; Hu, Y.; Zheng, Y.; Zhou, H.; Wang, Y.; Ma, Y.; Mao, K.; Yang, L.; Lin, G.; et al. Negative Regulation of Nmi on Virus-Triggered Type I IFN Production by Targeting IRF7. J Immunol 2013, 191, 3393–3399. [Google Scholar] [CrossRef]
- Wang, X.; Johansen, L.M.; Tae, H.-J.; Taparowsky, E.J. IFP 35 Forms Complexes with B-ATF, a Member of the AP1 Family of Transcription Factors. Biochemical and Biophysical Research Communications 1996, 229, 316–322. [Google Scholar] [CrossRef]
- Tan, J.; Qiao, W.; Wang, J.; Xu, F.; Li, Y.; Zhou, J.; Chen, Q.; Geng, Y. IFP35 Is Involved in the Antiviral Function of Interferon by Association with the Viral Tas Transactivator of Bovine Foamy Virus. Journal of Virology 2008, 82, 4275–4283. [Google Scholar] [CrossRef]
- Das, A.; Dinh, P.X.; Panda, D.; Pattnaik, A.K. Interferon-Inducible Protein IFI35 Negatively Regulates RIG-I Antiviral Signaling and Supports Vesicular Stomatitis Virus Replication. Journal of Virology 2014. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Shpall, R.L.; Meyerdierks, A.; Hagemeier, M.; Böttger, E.C.; Naumovski, L. Interferon-Inducible Myc/STAT-Interacting Protein Nmi Associates with IFP 35 into a High Molecular Mass Complex and Inhibits Proteasome-Mediated Degradation of IFP 35 *. Journal of Biological Chemistry 2000, 275, 36278–36284. [Google Scholar] [CrossRef] [PubMed]
- Bange, F.C.; Vogel, U.; Flohr, T.; Kiekenbeck, M.; Denecke, B.; Böttger, E.C. IFP 35 Is an Interferon-Induced Leucine Zipper Protein That Undergoes Interferon-Regulated Cellular Redistribution. Journal of Biological Chemistry 1994, 269, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Qin, Z.; Babu V, S.; Zhao, L.; Li, J.; Zhang, X.; Lin, L. Transcriptomic Profiles of Striped Snakehead Cells (SSN-1) Infected with Snakehead Vesiculovirus (SHVV) Identifying IFI35 as a Positive Factor for SHVV Replication. Fish & Shellfish Immunology 2019, 86, 46–52. [Google Scholar] [CrossRef]
- Madhuranga, W.S.P.; Tharuka, M.D.N.; Harasgama, J.C.; Kwon, H.; Wan, Q.; Lee, J. Immune Responses, Subcellular Localization, and Antiviral Activity of Interferon-Induced Protein 35 (IFP35) in Rock Bream (Oplegnathus Fasciatus). Developmental & Comparative Immunology 2021, 123, 104142. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, Y.; Zheng, J.; Yang, X.; Wang, Y.; Qin, Q.; Huang, X.; Huang, Y. Grouper Interferon-Induced Protein 35, a CP-Interacting Protein, Inhibits Fish Nodavirus Replication via Positively Regulating Host Interferon and Inflammatory Immune Response. Fish & Shellfish Immunology 2022, 128, 113–122. [Google Scholar] [CrossRef]
- Li, L.; Cai, J.; Wu, Z.; Yuan, Q.; Xia, H.; Lu, Y.; Gan, Z. Tilapia IFP35 Is Differently Induced by Three Subgroups of Type I IFNs via the JAK-STAT Signaling. Fish & Shellfish Immunology 2025, 166, 110619. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, S.N.; Li, N.; Nie, P. Transcriptional and Subcellular Characterization of Interferon Induced Protein-35 (IFP35) in Mandarin Fish, Siniperca Chuatsi. Developmental & Comparative Immunology 2021, 115, 103877. [Google Scholar] [CrossRef]
- Li, L.; Chen, S.N.; Li, N.; Nie, P. Molecular Characterization and Transcriptional Conservation of N-Myc-Interactor, Nmi, by Type I and Type II IFNs in Mandarin Fish Siniperca Chuatsi. Developmental & Comparative Immunology 2022, 130, 104354. [Google Scholar] [CrossRef]
- Li, L.; Chen, S.N.; Wang, K.L.; Li, N.; Pang, A.N.; Liu, L.H.; Li, B.; Hou, J.; Wang, S.; Nie, P. Interaction of Nmi and IFP35 Promotes Mutual Protein Stabilization and IRF3 and IRF7 Degradation to Suppress Type I IFN Production in Teleost Fish. J Immunol 2023, 210, 1494–1507. [Google Scholar] [CrossRef]
- Ghosh, S.; Marsh, E.N.G. Viperin: An Ancient Radical SAM Enzyme Finds Its Place in Modern Cellular Metabolism and Innate Immunity. J. Biol. Chem. 2020, 295, 11513–11528. [Google Scholar] [CrossRef]
- Rivera-Serrano, E.E.; Gizzi, A.S.; Arnold, J.J.; Grove, T.L.; Almo, S.C.; Cameron, C.E. Viperin Reveals Its True Function. Annual Review of Virology 2020, 7, 421–446. [Google Scholar] [CrossRef]
- Cui, Q.; Miao, Y.; Li, M.; Zheng, H.; Yuan, Y. Viperin: A Multifunctional Protein in Antiviral Immunity and Disease Pathogenesis. Pathogens 2025, 14, 510. [Google Scholar] [CrossRef]
- Hinson, E.R.; Cresswell, P. The N-Terminal Amphipathic α-Helix of Viperin Mediates Localization to the Cytosolic Face of the Endoplasmic Reticulum and Inhibits Protein Secretion*. Journal of Biological Chemistry 2009, 284, 4705–4712. [Google Scholar] [CrossRef] [PubMed]
- Shaveta, G.; Shi, J.; Chow, V.T.K.; Song, J. Structural Characterization Reveals That Viperin Is a Radical S-Adenosyl-l-Methionine (SAM) Enzyme. Biochemical and Biophysical Research Communications 2010, 391, 1390–1395. [Google Scholar] [CrossRef]
- Gizzi, A.S.; Grove, T.L.; Arnold, J.J.; Jose, J.; Jangra, R.K.; Garforth, S.J.; Du, Q.; Cahill, S.M.; Dulyaninova, N.G.; Love, J.D.; et al. A Naturally Occurring Antiviral Ribonucleotide Encoded by the Human Genome. Nature 2018, 558, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Fenwick, M.K.; Su, D.; Dong, M.; Lin, H.; Ealick, S.E. Structural Basis of the Substrate Selectivity of Viperin. Biochemistry 2020, 59, 652–662. [Google Scholar] [CrossRef]
- Patel, A.M.; Marsh, E.N.G. The Antiviral Enzyme, Viperin, Activates Protein Ubiquitination by the E3 Ubiquitin Ligase, TRAF6. Journal of the American Chemical Society 2021. [Google Scholar] [CrossRef]
- Panayiotou, C.; Lindqvist, R.; Kurhade, C.; Vonderstein, K.; Pasto, J.; Edlund, K.; Upadhyay, A.S.; Överby, A.K. Viperin Restricts Zika Virus and Tick-Borne Encephalitis Virus Replication by Targeting NS3 for Proteasomal Degradation. Journal of Virology 2018, 92. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Patel, A.M.; Grunkemeyer, T.J.; Dumbrepatil, A.B.; Zegalia, K.; Kennedy, R.T.; Marsh, E.N.G. Interactions between Viperin, Vesicle-Associated Membrane Protein A, and Hepatitis C Virus Protein NS5A Modulate Viperin Activity and NS5A Degradation. Biochemistry 2020, 59, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Eslamloo, K.; Ghorbani, A.; Xue, X.; Inkpen, S.M.; Larijani, M.; Rise, M.L. Characterization and Transcript Expression Analyses of Atlantic Cod Viperin. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Raji Sathyan, K.; Premraj, A.; Thavarool Puthiyedathu, S. Antiviral Radical SAM Enzyme Viperin Homologue from Asian Seabass (Lates Calcarifer): Molecular Characterisation and Expression Analysis. Developmental & Comparative Immunology 2022, 136, 104499. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.-B.; Liu, T.-K.; Shi, J.; Sun, F.; Gui, J.-F. Fish Viperin Exerts a Conserved Antiviral Function through RLR-Triggered IFN Signaling Pathway. Developmental & Comparative Immunology 2014, 47, 140–149. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, J.; Xiao, Z.; Sun, L. Rock Bream (Oplegnathus Fasciatus) Viperin Is a Virus-Responsive Protein That Modulates Innate Immunity and Promotes Resistance against Megalocytivirus Infection. Developmental & Comparative Immunology 2014, 45, 35–42. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, S.; Zheng, J.; Huang, X.; Huang, Y.; Qin, Q. Grouper Viperin Acts as a Crucial Antiviral Molecule against Iridovirus. Fish & Shellfish Immunology 2019, 86, 1026–1034. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, X.; Kuang, J.; Li, B.; Yu, Q.; Liu, M.; Li, B.; Guo, H.; Li, P. Molecular and Functional Characterization of Viperin in Golden Pompano, Trachinotus Ovatus. Fish & Shellfish Immunology 2023, 142, 109098. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Liu, L.; Li, H.; Zhu, H. Expression Analysis and Antiviral Activity of Koi Carp (Cyprinus Carpio) Viperin against Carp Edema Virus (CEV). Fish & Shellfish Immunology 2024, 148, 109519. [Google Scholar] [CrossRef] [PubMed]
- Shanaka, K.A.S.N.; Tharuka, M.D.N.; Priyathilaka, T.T.; Lee, J. Molecular Characterization and Expression Analysis of Rockfish (Sebastes Schlegelii) Viperin, and Its Ability to Enervate RNA Virus Transcription and Replication in Vitro. Fish & Shellfish Immunology 2019, 92, 655–666. [Google Scholar] [CrossRef]
- Madushani, K.P.; Shanaka, K.A.S.N.; Yang, H.; Lim, C.; Jeong, T.; Tharuka, M.D.N.; Lee, J. Molecular Characterization, Expression Profile, and Antiviral Activity of Redlip Mullet (Liza Haematocheila) Viperin. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2022, 258, 110699. [Google Scholar] [CrossRef]
- Luo, W.; Wu, H.; Huang, Y.; Zou, W.; Han, F. Regulatory Mechanism of Viperin in the Interferon Signaling Pathway of Large Yellow Croaker: Characterization of the Promoter Region. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2025, 279, 111115. [Google Scholar] [CrossRef]
- Dumbrepatil, A.B.; Ghosh, S.; Zegalia, K.A.; Malec, P.A.; Hoff, J.D.; Kennedy, R.T.; Marsh, E.N.G. Viperin Interacts with the Kinase IRAK1 and the E3 Ubiquitin Ligase TRAF6, Coupling Innate Immune Signaling to Antiviral Ribonucleotide Synthesis. Journal of Biological Chemistry 2019, 294, 6888–6898. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Jiao, H.; Liu, W.; Chen, B.; Wang, Y.; Chen, B.; Lu, Y.; Su, J.; Zhang, Y.; Liu, X. The Antiviral Mechanism of Viperin and Its Splice Variant in Spring Viremia of Carp Virus Infected Fathead Minnow Cells. Fish & Shellfish Immunology 2019, 86, 805–813. [Google Scholar] [CrossRef]
- Gao, Y.; Li, C.; Shi, L.; Wang, F.; Ye, J.; Lu, Y.-A.; Liu, X.-Q. Viperin_sv1 Promotes RIG-I Expression and Suppresses SVCV Replication through Its Radical SAM Domain. Developmental & Comparative Immunology 2021, 123, 104166. [Google Scholar] [CrossRef]
- Mou, C.-Y.; Li, S.; Lu, L.-F.; Wang, Y.; Yu, P.; Li, Z.; Tong, J.-F.; Zhang, Q.-Y.; Wang, Z.-W.; Zhang, X.-J.; et al. Divergent Antiviral Mechanisms of Two Viperin Homeologs in a Recurrent Polyploid Fish. Front. Immunol. 2021, 12. [Google Scholar] [CrossRef]
- Wang, X.; Hinson, E.R.; Cresswell, P. The Interferon-Inducible Protein Viperin Inhibits Influenza Virus Release by Perturbing Lipid Rafts. Cell Host & Microbe 2007, 2, 96–105. [Google Scholar] [CrossRef]
- Grunkemeyer, T.J.; Ghosh, S.; Patel, A.M.; Sajja, K.; Windak, J.; Basrur, V.; Kim, Y.; Nesvizhskii, A.I.; Kennedy, R.T.; Marsh, E.N.G. The Antiviral Enzyme Viperin Inhibits Cholesterol Biosynthesis. Journal of Biological Chemistry 2021, 297. [Google Scholar] [CrossRef] [PubMed]
- Shanaka, K. a. S.N.; Jung, S.; Madushani, K.P.; Kim, M.-J.; Lee, J. Viperin Mutation Is Linked to Immunity, Immune Cell Dynamics, and Metabolic Alteration during VHSV Infection in Zebrafish. Front. Immunol. 2023, 14. [Google Scholar] [CrossRef]
- Mortimer, P.M.; Svetitsky, S.; Thomas, D.C. Chronic Granulomatous Disease: Lessons in Cell Biology from Monogenic Immunodeficiency. Clin Exp Immunol 2025, 219, uxaf031. [Google Scholar] [CrossRef]
- Luo, W.; Wu, H.; Huang, Y.; Ye, K.; Zou, W.; Han, F. Molecular and Functional Characterization of Viperin in Large Yellow Croaker (Larimichthys Crocea). Fish & Shellfish Immunology 2025, 165, 110498. [Google Scholar] [CrossRef]
- Komander, D.; Rape, M. The Ubiquitin Code. Annu. Rev. Biochem. 2012, 81, 203–229. [Google Scholar] [CrossRef] [PubMed]
- Buetow, L.; Huang, D.T. Structural Insights into the Catalysis and Regulation of E3 Ubiquitin Ligases. Nat Rev Mol Cell Biol 2016, 17, 626–642. [Google Scholar] [CrossRef] [PubMed]
- Vunjak, M.; Versteeg, G.A. TRIM Proteins. Current Biology 2019, 29, R42–R44. [Google Scholar] [CrossRef]
- Rajsbaum, R.; García-Sastre, A.; Versteeg, G.A. TRIMmunity: The Roles of the TRIM E3-Ubiquitin Ligase Family in Innate Antiviral Immunity. Journal of Molecular Biology 2014, 426, 1265–1284. [Google Scholar] [CrossRef]
- Sardiello, M.; Cairo, S.; Fontanella, B.; Ballabio, A.; Meroni, G. Genomic Analysis of the TRIM Family Reveals Two Groups of Genes with Distinct Evolutionary Properties. BMC Evol Biol 2008, 8, 225. [Google Scholar] [CrossRef]
- Hage, A.; Rajsbaum, R. To TRIM or Not to TRIM: The Balance of Host–Virus Interactions Mediated by the Ubiquitin System. Journal of General Virology 2019, 100, 1641–1662. [Google Scholar] [CrossRef]
- Langevin, C.; Levraud, J.-P.; Boudinot, P. Fish Antiviral Tripartite Motif (TRIM) Proteins. Fish & Shellfish Immunology 2019, 86, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Peng, S.; Wei, J.; Xie, Z. The Function of TRIM25 in Antiviral Defense and Viral Immune Evasion. Viruses 2025, 17, 735. [Google Scholar] [CrossRef]
- Gack, M.U.; Shin, Y.C.; Joo, C.-H.; Urano, T.; Liang, C.; Sun, L.; Takeuchi, O.; Akira, S.; Chen, Z.; Inoue, S.; et al. TRIM25 RING-Finger E3 Ubiquitin Ligase Is Essential for RIG-I-Mediated Antiviral Activity. Nature 2007, 446, 916–920. [Google Scholar] [CrossRef]
- Choudhury, N.R.; Heikel, G.; Michlewski, G. TRIM25 and Its Emerging RNA-binding Roles in Antiviral Defense. WIREs RNA 2020. [Google Scholar] [CrossRef]
- Yang, E.; Nguyen, L.P.; Wisherop, C.A.; Kan, R.L.; Li, M.M.H. The Role of ZAP and TRIM25 RNA Binding in Restricting Viral Translation. Frontiers in Cellular and Infection Microbiology 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Galão, R.P.; Wilson, H.; Schierhorn, K.L.; Debeljak, F.; Bodmer, B.S.; Goldhill, D.; Hoenen, T.; Wilson, S.J.; Swanson, C.M.; Neil, S.J.D. TRIM25 and ZAP Target the Ebola Virus Ribonucleoprotein Complex to Mediate Interferon-Induced Restriction. PLOS Pathogens 2022, 18, e1010530. [Google Scholar] [CrossRef] [PubMed]
- Li, M.M.H.; Lau, Z.; Cheung, P.; Aguilar, E.G.; Schneider, W.M.; Bozzacco, L.; Molina, H.; Buehler, E.; Takaoka, A.; Rice, C.M.; et al. TRIM25 Enhances the Antiviral Action of Zinc-Finger Antiviral Protein (ZAP). PLoS Pathog 2017, 13, e1006145. [Google Scholar] [CrossRef]
- Yang, E.; Huang, S.; Jami-Alahmadi, Y.; McInerney, G.M.; Wohlschlegel, J.A.; Li, M.M.H. Elucidation of TRIM25 Ubiquitination Targets Involved in Diverse Cellular and Antiviral Processes. PLOS Pathogens 2022, 18, e1010743. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Huang, Y.; Yu, Y.; Yang, M.; Zhou, S.; Qin, Q.; Huang, X. RING Domain Is Essential for the Antiviral Activity of TRIM25 from Orange Spotted Grouper. Fish & Shellfish Immunology 2016, 55, 304–314. [Google Scholar] [CrossRef]
- Jin, Y.; Jia, K.; Zhang, W.; Xiang, Y.; Jia, P.; Liu, W.; Yi, M. Zebrafish TRIM25 Promotes Innate Immune Response to RGNNV Infection by Targeting 2CARD and RD Regions of RIG-I for K63-Linked Ubiquitination. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef]
- Liu, R.; Li, H.; Liu, X.; Liang, B.; Qi, Y.; Meng, F.; Yang, G.; Shan, S. TRIM25 Inhibits Spring Viraemia of Carp Virus Replication by Positively Regulating RIG-I Signaling Pathway in Common Carp (Cyprinus Carpio L.). Fish & Shellfish Immunology 2022, 127, 306–317. [Google Scholar] [CrossRef]
- Zhou, Z.; Wei, K.; Zhang, J. The Two TRIM25 Isoforms Were Differentially Induced in Larimichthys Crocea Post Poly (I:C) Stimulation. Fish & Shellfish Immunology 2019, 86, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Sun, Z.; Zhang, Y.; Wang, G.; He, Z.; Liu, Y.; Ren, Y.; Wang, Y.; Fu, Y.; Hou, J. Molecular Identification and Function Characterization of Four Alternative Splice Variants of Trim25 in Japanese Flounder (Paralichthys Olivaceus). Fish & Shellfish Immunology 2022, 120, 142–154. [Google Scholar] [CrossRef]
- Lista, M.J.; Ficarelli, M.; Wilson, H.; Kmiec, D.; Youle, R.L.; Wanford, J.; Winstone, H.; Odendall, C.; Taylor, I.A.; Neil, S.J.D.; et al. A Nuclear Export Signal in KHNYN Required for Its Antiviral Activity Evolved as ZAP Emerged in Tetrapods. Journal of Virology 2023, 97, e00872-22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, C.; Yan, D.; Si, L.; Chang, L.; Li, T. Molecular Characterization and Functional Analysis of ZAP-like Gene in Common Carp (Cyprinus Carpio). Fish & Shellfish Immunology 2024, 154, 109981. [Google Scholar] [CrossRef]
- van der Aa, L.M.; Levraud, J.-P.; Yahmi, M.; Lauret, E.; Briolat, V.; Herbomel, P.; Benmansour, A.; Boudinot, P. A Large New Subset of TRIM Genes Highly Diversified by Duplication and Positive Selection in Teleost Fish. BMC Biol 2009, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Boudinot, P.; van der Aa, L.M.; Jouneau, L.; Du Pasquier, L.; Pontarotti, P.; Briolat, V.; Benmansour, A.; Levraud, J.-P. Origin and Evolution of TRIM Proteins: New Insights from the Complete TRIM Repertoire of Zebrafish and Pufferfish. PLoS One 2011, 6, e22022. [Google Scholar] [CrossRef]
- Liu, W.; Kuang, M.; Zhang, Z.; Lu, Y.; Liu, X. Molecular Characterization and Expression Analysis of Ftr01, Ftr42, and Ftr58 in Zebrafish (Danio Rerio). Virol Sin 2019, 34, 434–443. [Google Scholar] [CrossRef]
- Li, Y.-L.; Zhao, X.; Gong, X.-Y.; Dan, C.; Gui, J.-F.; Zhang, Y.-B. Molecular Identification and Function Characterization of Four finTRIM Genes from the Immortal Fish Cell Line, EPC. Developmental & Comparative Immunology 2020, 113, 103775. [Google Scholar] [CrossRef]
- Chen, B.; Huo, S.; Liu, W.; Wang, F.; Lu, Y.; Xu, Z.; Liu, X. Fish-Specific finTRIM FTR36 Triggers IFN Pathway and Mediates Inhibition of Viral Replication. Fish & Shellfish Immunology 2019, 84, 876–884. [Google Scholar] [CrossRef]
- Huo, S.; Jiao, H.; Chen, B.; Kuang, M.; Li, Q.; Lu, Y.; Liu, X. FTR67, a Member of the Fish-Specific finTRIM Family, Triggers IFN Pathway and against Spring Viremia of Carp Virus. Fish & Shellfish Immunology 2020, 103, 1–8. [Google Scholar] [CrossRef]
- Wu, M.; Zhao, X.; Gong, X.-Y.; Wang, Y.; Gui, J.-F.; Zhang, Y.-B. FTRCA1, a Species-Specific Member of finTRIM Family, Negatively Regulates Fish IFN Response through Autophage-Lysosomal Degradation of TBK1. The Journal of Immunology 2019, 202, 2407–2420. [Google Scholar] [CrossRef]
- Wu, M.; Dan, C.; Gui, J.-F.; Zhang, Y.-B. Fish Species-Specific TRIM Gene FTRCA1 Negatively Regulates Interferon Response through Attenuating IRF7 Transcription. Fish & Shellfish Immunology 2019, 90, 180–187. [Google Scholar] [CrossRef]
- Qu, Z.-L.; Li, Y.-L.; Gong, X.-Y.; Zhao, X.; Sun, H.-Y.; Dan, C.; Gui, J.-F.; Zhang, Y.-B. A finTRIM Family Protein Acquires RNA-Binding Activity and E3 Ligase Activity to Shape the IFN Response in Fish. J Immunol 2022, 209, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Zhang, Y.; Zheng, J.; Huang, X.; Huang, Y.; Qin, Q. Negative Regulation of the Interferon Response by finTRIM82 in the Orange Spotted Grouper. Fish & Shellfish Immunology 2019, 88, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhang, L.; Huo, H.J.; Hou, J.; Niu, M.M.; Nie, P.; Chen, S.N. FTR33, a Member of Fish-Specific TRIM (finTRIM) Subfamily, Regulates Negatively Type I IFN Antiviral Immunity in Zebrafish. Developmental & Comparative Immunology 2023, 142, 104671. [Google Scholar] [CrossRef]
- Zhi, L.; Zhang, G.; He, M.; Ma, Y.; Qin, Q.; Huang, X.; Huang, Y. Grouper FTR14 Negatively Regulates Inflammatory Response by Targeting TRAF4 and TRAF6. Fish & Shellfish Immunology 2025, 161, 110306. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Muto, T.; Kleppe, M.; Bolanos, L.C.; Hueneman, K.M.; Walker, C.S.; Sampson, L.; Wellendorf, A.M.; Chetal, K.; Choi, K.; et al. TRAF6 Mediates Basal Activation of NF-κB Necessary for Hematopoietic Stem Cell Homeostasis. Cell Reports 2018, 22, 1250–1262. [Google Scholar] [CrossRef]
- Perng, Y.-C.; Lenschow, D.J. ISG15 in Antiviral Immunity and Beyond. Nat Rev Microbiol 2018, 16, 423–439. [Google Scholar] [CrossRef]
- Dzimianski, J.V.; Scholte, F.E.M.; Bergeron, É.; Pegan, S.D. ISG15: It’s Complicated. Journal of Molecular Biology 2019, 431, 4203–4216. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, D.-E. Interferon-Stimulated Gene 15 and the Protein ISGylation System. Journal of Interferon & Cytokine Research 2011, 31, 119–130. [Google Scholar] [CrossRef]
- Shen, B.; Wei, K.; Guo, S.; Liu, C.; Zhang, J. Molecular Characterization and Expression Analyses of Two Homologues of Interferon-Stimulated Gene ISG15 in Larimichthys Crocea (Family: Sciaenidae). Fish & Shellfish Immunology 2019, 86, 846–857. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Hu, G.-B.; Liu, D.-H.; Li, S.; Liu, Q.-M.; Zhang, S.-C. Molecular Cloning and Expression Analysis of Interferon Stimulated Gene 15 (ISG15) in Turbot, Scophthalmus Maximus. Fish & Shellfish Immunology 2015, 45, 895–900. [Google Scholar] [CrossRef]
- Krishna Priya, R.S.; Premraj, A.; Sivakumar, K.C.; Sajeevan, T.P. Identification of Two ISG15 Homologues Involved in Host Immune Response against RGNNV in Asian Seabass (Lates Calcarifer). Fish and Shellfish Immunology Reports 2022, 3, 100054. [Google Scholar] [CrossRef]
- Moreno, P.; Leiva-Rebollo, R.; Garcia-Rosado, E.; Bejar, J.; Alonso, M.C. Cytokine-like Activity of European Sea Bass ISG15 Protein on RGNNV-Infected E−11 Cells. Fish & Shellfish Immunology 2022, 128, 612–619. [Google Scholar] [CrossRef]
- Grimholt, U.; Sindre, H.; Sundaram, A.Y.M. ISGylation and E3 Ubiquitin Ligases: An Atlantic Salmon Genetic Perspective. Front. Immunol. 2025, 16. [Google Scholar] [CrossRef]
- Bade, V.N.; Nickels, J.; Keusekotten, K.; Praefcke, G.J.K. Covalent Protein Modification with ISG15 via a Conserved Cysteine in the Hinge Region. PLOS ONE 2012, 7, e38294. [Google Scholar] [CrossRef]
- Li, Y.-L.; Gong, X.-Y.; Qu, Z.-L.; Zhao, X.; Dan, C.; Sun, H.-Y.; An, L.-L.; Gui, J.-F.; Zhang, Y.-B. Zebrafish HERC7c Acts as an Inhibitor of Fish IFN Response. International Journal of Molecular Sciences 2023, 24, 4592. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-L.; Gong, X.-Y.; Qu, Z.-L.; Zhao, X.; Dan, C.; Gui, J.-F.; Zhang, Y.-B. A Novel Non–Mammalian-Specific HERC7 Negatively Regulates IFN Response through Degrading RLR Signaling Factors. J Immunol 2022, 208, 1189–1203. [Google Scholar] [CrossRef]
- Mérour, E.; Jami, R.; Lamoureux, A.; Bernard, J.; Brémont, M.; Biacchesi, S. A20 (Tnfaip3) Is a Negative Feedback Regulator of RIG-I-Mediated IFN Induction in Teleost. Fish & Shellfish Immunology 2019, 84, 857–864. [Google Scholar] [CrossRef]
- Schoggins, J.W.; Wilson, S.J.; Panis, M.; Murphy, M.Y.; Jones, C.T.; Bieniasz, P.; Rice, C.M. A Diverse Range of Gene Products Are Effectors of the Type I Interferon Antiviral Response. Nature 2011, 472, 481–485. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Zhang, Y.; Vakharia, V.N.; Zhang, X.; Lv, X.; Sun, W. Screening of Genes Encoding Proteins That Interact with ISG15: Probing a cDNA Library from a Snakehead Fish Cell Line Using a Yeast Two-Hybrid System. Fish & Shellfish Immunology 2022, 128, 300–306. [Google Scholar] [CrossRef]
- Onomoto, K.; Yoneyama, M.; Fung, G.; Kato, H.; Fujita, T. Antiviral Innate Immunity and Stress Granule Responses. Trends in Immunology 2014, 35, 420–428. [Google Scholar] [CrossRef] [PubMed]
- McCormick, C.; Khaperskyy, D.A. Translation Inhibition and Stress Granules in the Antiviral Immune Response. Nat Rev Immunol 2017, 17, 647–660. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
