Ultrasonic vibration-assisted grinding (UVAIG) is a continuous-contact grinding process. In this process, the arc length of engagement for a single abrasive grain is longer compared to conventional grinding, which enhances the quality of the processed surface and improves processing efficiency. This study aims to establish a three-dimensional model of abrasive grains in space and to theoretically deduce the trajectory of abrasive grains during axial ultrasonic vibration-assisted internal grinding (UVAIG), as well as the resulting surface quality, measured as Ra. A three-dimensional simulation tool for ultrasonic vibration grinding micro-surfaces is developed using MATLAB. This tool enables the analysis of how various processing parameters affect workpiece surface morphology. Additionally, a predictive model is established for UVAIG simulations, allowing theoretical calculation of surface topography changes induced by different processing parameters, vibration settings, and abrasive grain models.