Submitted:
09 January 2026
Posted:
12 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
- HRRP is distinct from millimeter-wave radar. To the best of our knowledge, this is the first framework to fuse HRRP with 3D point clouds for object classification.
- We propose Point-HRRP-Net, a fusion framework that incorporates a Bi-CA mechanism to integrate HRRP and 3D point clouds.
- We have constructed and publicly released a paired point cloud-HRRP dataset through electromagnetic and optical simulation.
- Experimental results in a simulated environment demonstrate that the proposed framework outperforms single-modality baselines. Comprehensive ablation studies validate the design rationale, demonstrating the necessity of both the specific feature extractors and the Bi-CA mechanism for achieving robust performance.
2. Methods
2.1. Point-HRRP-Net Overview
2.2. HRRP Feature Extractor
2.3. 3D Point Cloud Feature Extractor: DGCNN
2.4. Bi-CA Fusion Module
2.5. Experimental Setup and Implementation Details
3. Results
3.1. Dataset Setup
3.1.1. Target Geometry and Parameters
3.1.2. Multimodal Data Simulation
3.1.3. Data Augmentation and Dataset Splitting
3.1.4. Evaluation Metrics
3.2. Experimental Results
3.2.1. Performance Comparison against Single-Modality Methods
3.2.2. Ablation Study on Fusion Strategies
3.2.3. Ablation Study on Feature Extractors
4. Discussion
4.1. Visual Analysis of Cross-Modal Interactions
4.2. Sim-to-Real Analysis
4.2.1. Analysis of Rotational Offset Scenarios
4.2.2. Model Stress Test Analysis
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| HRRP | High-Resolution Range Profile |
| LiDAR | Light Detection and Ranging |
| Bi-CA | Bi-Directional Cross-Attention |
| DGCNN | Dynamic Graph Convolutional Neural Network |
| CNN | Convolutional Neural Network |
| RNN | Recurrent Neural Network |
| LSTM | Long Short-Term Memory |
| GRU | Gated Recurrent Unit |
| SSM | State Space Model |
| PEC | Perfect Electrical Conductor |
| FFT | Fast Fourier Transform |
| OA | Overall Accuracy |
| SNR | Signal-to-Noise Ratio |
| MLP | Multi-Layer Perceptron |
| SAR | Synthetic Aperture Radar |
| IR | Infrared |
| GAP | Global Average Pooling |
Appendix A. Data Augmentation Strategies
| Strategy ID | HRRP Augmentation | Point Cloud (PC) Augmentation |
|---|---|---|
| 1 | Gaussian noise () | Gaussian jitter to coordinates () |
| 2 | Gaussian noise () | Gaussian jitter to coordinates () |
| 3 | Gaussian noise () | Gaussian jitter to coordinates () |
| 4 | Gaussian noise () | Gaussian jitter to coordinates () |
| 5 | Amplitude scaling (range: 0.9-1.1) | Global scaling (range: 0.9-1.1) |
| 6 | Linear shifting (zero-padded) | No operation |
| 7 | No operation | Random rotation |
| 8 | Gaussian Noise () + Linear shifting | Rotation + Global scaling (0.9-1.1) |
| 9 | Gaussian Noise () + Linear shifting | Rotation + Global scaling (0.9-1.1) |
| 10 | Gaussian Noise () + Linear shifting | Rotation + Global scaling (0.9-1.1) |
| 11 | Gaussian Noise () + Linear shifting | Rotation + Global scaling (0.9-1.1) |
| 12 | Amplitude Scaling (0.9-1.1) + Linear shifting | Gaussian Jitter () + Rotation |
| 13 | Amplitude Scaling (0.9-1.1) + Linear shifting | Gaussian Jitter () + Rotation |
| 14 | Amplitude Scaling (0.9-1.1) + Linear shifting | Gaussian Jitter () + Rotation |
| 15 | Amplitude Scaling (0.9-1.1) + Linear shifting | Gaussian Jitter () + Rotation |
Appendix B. Hardware Efficiency and Deployment Analysis
| Category | Device Name | Architecture | Latency (ms) |
|---|---|---|---|
| Consumer GPU | NVIDIA RTX 5090 | Blackwell | 5.75 |
| NVIDIA RTX 5070 | Blackwell | 6.87 | |
| NVIDIA RTX 4090 | Ada Lovelace | 8.76 | |
| NVIDIA RTX 4090 D | Ada Lovelace | 6.52 | |
| NVIDIA RTX 3080 Ti | Ampere | 9.82 | |
| Workstation / Data Center | NVIDIA RTX 6000 Ada | Ada Lovelace | 5.20 |
| NVIDIA H800 | Hopper | 6.26 | |
| NVIDIA H20 | Hopper | 6.33 | |
| NVIDIA A800 (80G) | Ampere | 7.51 | |
| NVIDIA L20 | Ada Lovelace | 5.98 | |
| NVIDIA Tesla V100 (32G) | Volta | 23.28 | |
| NVIDIA RTX A4000 | Ampere | 9.68 | |
| CPU (x86) | Intel Xeon Gold 6459C | Sapphire Rapids | 8.77 |
| AMD Ryzen 7 9700X | Zen 5 | 12.31 | |
| AMD EPYC 9654 | Zen 4 | 19.62 | |
| AMD EPYC 9754 | Zen 4c | 24.65 | |
| Intel Xeon Platinum 8352V | Ice Lake | 32.90 | |
| Embedded GPU | NVIDIA Jetson Orin Nano (8GB) | Ampere | 33.29 |
| NPU | Huawei Ascend 910B2 | Da Vinci | 241.28* |
Appendix C. Sensitivity Analysis

Appendix D. Analysis of Potential Data Leakage from Back-scattering Symmetry

References
- Kechagias-Stamatis, O.; Aouf, N. Automatic Target Recognition on Synthetic Aperture Radar Imagery: A Survey. IEEE Aerospace and Electronic Systems Magazine 2021, 36, 56–81. [Google Scholar] [CrossRef]
- Obaideen, K.; McCafferty-Leroux, A.; Hilal, W.; AlShabi, M.; Gadsden, S.A. Analysis of deep learning in automatic target recognition: evolution and emerging trends. In Proceedings of the Automatic Target Recognition XXXV; Chen, K., Hammoud, R.I., Overman, T.L., Eds.; International Society for Optics and Photonics, SPIE, 2025; Vol. 13463, p. 134630E. [Google Scholar] [CrossRef]
- Chen, B.; Liu, H.; Chai, J.; Bao, Z. Large margin feature weighting method via linear programming. IEEE Transactions on Knowledge and Data Engineering 2008, 21, 1475–1488. [Google Scholar] [CrossRef]
- Fu, Z.; Li, S.; Li, X.; Dan, B.; Wang, X. A Neural Network with Convolutional Module and Residual Structure for Radar Target Recognition Based on High-Resolution Range Profile. Sensors 2020, 20. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Xie, R.; Ran, L. Radar HRRP target recognition based on dynamic learning with limited training data. Remote Sensing 2021, 13, 750. [Google Scholar] [CrossRef]
- Jacobs, S.; O’Sullivan, J. Automatic target recognition using sequences of high resolution radar range-profiles. IEEE Transactions on Aerospace and Electronic Systems 2000, 36, 364–381. [Google Scholar] [CrossRef]
- Du, L.; Liu, H.; Bao, Z. Radar HRRP statistical recognition: Parametric model and model selection. IEEE Transactions on Signal Processing 2008, 56, 1931–1944. [Google Scholar] [CrossRef]
- Liao, X.; Runkle, P.; Carin, L. Identification of ground targets from sequential high-range-resolution radar signatures. IEEE Transactions on Aerospace and Electronic systems 2003, 38, 1230–1242. [Google Scholar] [CrossRef]
- Du, L.; Wang, P.; Liu, H.; Pan, M.; Chen, F.; Bao, Z. Bayesian Spatiotemporal Multitask Learning for Radar HRRP Target Recognition. IEEE Transactions on Signal Processing 2011, 59, 3182–3196. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, L.; Zhou, Q.; Zhang, X.; Zhang, L.; Wang, Y. Sparse View HRRP Recognition Based on Dual-Task of Generation and Recognition Method. In Proceedings of the 2024 IEEE International Conference on Signal, Information and Data Processing (ICSIDP); 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Zhou, Q.; Yu, B.; Wang, Y.; Zhang, L.; Zheng, L.; Zou, D.; Zhang, X. Generative Multi-View HRRP Recognition Based on Cascade Generation and Fusion Network. In Proceedings of the 2024 International Radar Conference (RADAR), 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Li, X.; Ouyang, W.; Pan, M.; Lv, S.; Ma, Q. Continuous learning method of radar HRRP based on CVAE-GAN. IEEE Transactions on Geoscience and Remote Sensing 2023, 61, 1–19. [Google Scholar] [CrossRef]
- Feng, B.; Chen, B.; Liu, H. Radar HRRP target recognition with deep networks. Pattern Recognition 2017, 61, 379–393. [Google Scholar] [CrossRef]
- Yin, H.; Guo, Z. Radar HRRP target recognition with one-dimensional CNN. Telecommun. Eng 2018, 58, 1121–1126. [Google Scholar]
- Xu, B.; Chen, B.; Wan, J.; Liu, H.; Jin, L. Target-Aware Recurrent Attentional Network for Radar HRRP Target Recognition. Signal Processing 2019, 155, 268–280. [Google Scholar] [CrossRef]
- Liu, J.; Chen, B.; Chen, W.; Yang, Y. Radar HRRP Target Recognition with Target Aware Two-Dimensional Recurrent Neural Network. In Proceedings of the 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Computation 1997, 9, 1735–1780. Available online: https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf. [CrossRef] [PubMed]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar] [CrossRef]
- Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the International conference on machine learning. Pmlr, 2013; pp. 1310–1318. [Google Scholar]
- Zhao, H.; Jiang, L.; Jia, J.; Torr, P.H.; Koltun, V. Point transformer. In Proceedings of the Proceedings of the IEEE/CVF international conference on computer vision, 2021; pp. 16259–16268. [Google Scholar]
- Zhang, L.; Han, C.; Wang, Y.; Li, Y.; Long, T. Polarimetric HRRP recognition based on feature-guided Transformer model. Electronics Letters 2021, 57, 705–707. [Google Scholar] [CrossRef]
- Diao, Y.; Liu, S.; Gao, X.; Liu, A. Position Embedding-Free Transformer for Radar HRRP Target Recognition. In Proceedings of the IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, 2022; pp. 1896–1899. [Google Scholar] [CrossRef]
- Gulati, A.; Qin, J.; Chiu, C.C.; Parmar, N.; Zhang, Y.; Yu, J.; Han, W.; Wang, S.; Zhang, Z.; Wu, Y.; et al. Conformer: Convolution-augmented Transformer for Speech Recognition. Interspeech 2020 2020. [Google Scholar]
- Gu, A.; Dao, T. Mamba: Linear-time sequence modeling with selective state spaces. In Proceedings of the First conference on language modeling; 2024. [Google Scholar]
- Wang, Z.; Kong, F.; Feng, S.; Wang, M.; Yang, X.; Zhao, H.; Wang, D.; Zhang, Y. Is mamba effective for time series forecasting? Neurocomputing 2025, 619, 129178. [Google Scholar] [CrossRef]
- Rajah, P.; Odindi, J.; Mutanga, O. Feature level image fusion of optical imagery and Synthetic Aperture Radar (SAR) for invasive alien plant species detection and mapping. Remote Sensing Applications: Society and Environment 2018, 10, 198–208. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, H.; Lin, H.; Gamba, P.E.; Liu, X. Incorporating synthetic aperture radar and optical images to investigate the annual dynamics of anthropogenic impervious surface at large scale. Remote sensing of environment 2020, 242, 111757. [Google Scholar] [CrossRef]
- Chu, Z.; Luo, H.; Zhang, T.; Zhao, C.; Lin, B.; Gao, F. Micro-Doppler and HRRP Enabled UAV and Bird Recognition Scheme for ISAC System. In Proceedings of the 2025 IEEE/CIC International Conference on Communications in China (ICCC), 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, L.; Feng, W.; Wu, Y.; Huang, L.; Quan, Y. Radar-infrared sensor fusion based on hierarchical features mining. IEEE Signal Processing Letters 2023, 31, 66–70. [Google Scholar] [CrossRef]
- Zhang, F.; Bi, X.; Zhang, Z.; Xu, Y. HIFR-Net: A HRRP-Infrared Fusion Recognition Network Capable of Handling Modality Missing and Multisource Data Misalignment. IEEE Sensors Journal 2025, 25, 5769–5781. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, J.; Li, Y.; Hu, J.; Liu, C.; Zhang, Y.; Ji, J.; Ouyang, W.; Zhang, Y. Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object Detection. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2023; pp. 13394–13403. [Google Scholar]
- Xu, R.; Xiang, Z. RLNet: Adaptive Fusion of 4D Radar and Lidar for 3D Object Detection. In Proceedings of the Computer Vision – ECCV 2024 Workshops; Del Bue, A., Canton, C., Pont-Tuset, J., Tommasi, T., Eds.; Cham, 2025; pp. 181–194. [Google Scholar]
- Li, Y.; Ibanez-Guzman, J. Lidar for Autonomous Driving: The Principles, Challenges, and Trends for Automotive Lidar and Perception Systems. IEEE Signal Processing Magazine 2020, 37, 50–61. [Google Scholar] [CrossRef]
- Widdowson, D.; Kurlin, V. Recognizing rigid patterns of unlabeled point clouds by complete and continuous isometry invariants with no false negatives and no false positives. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023; pp. 1275–1284. [Google Scholar]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017. [Google Scholar]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Advances in neural information processing systems 2017, 30. [Google Scholar]
- Guo, B.; Huang, X.; Zhang, F.; Sohn, G. Classification of airborne laser scanning data using JointBoost. ISPRS Journal of Photogrammetry and Remote Sensing 2015, 100, 71–83. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, H.; Lin, Y.; Han, S. Point-voxel cnn for efficient 3d deep learning. Advances in neural information processing systems 2019, 32. [Google Scholar]
- Hsu, P.H.; Zhuang, Z.Y. Incorporating handcrafted features into deep learning for point cloud classification. Remote Sensing 2020, 12, 3713. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic Graph CNN for Learning on Point Clouds. In ACM Transactions on Graphics (TOG); 2019. [Google Scholar]
- Ma, X.; Qin, C.; You, H.; Ran, H.; Fu, Y. Rethinking network design and local geometry in point cloud: A simple residual MLP framework. arXiv 2022, arXiv:2202.07123. [Google Scholar] [CrossRef]
- Liang, D.; Zhou, X.; Xu, W.; Zhu, X.; Zou, Z.; Ye, X.; Tan, X.; Bai, X. Pointmamba: A simple state space model for point cloud analysis. Advances in neural information processing systems 2024, 37, 32653–32677. [Google Scholar]
- Baltrušaitis, T.; Ahuja, C.; Morency, L.P. Multimodal machine learning: A survey and taxonomy. IEEE transactions on pattern analysis and machine intelligence 2018, 41, 423–443. [Google Scholar] [CrossRef]
- Guo, W.; Wang, J.; Wang, S. Deep multimodal representation learning: A survey. Ieee Access 2019, 7, 63373–63394. [Google Scholar] [CrossRef]
- Boulahia, S.Y.; Amamra, A.; Madi, M.R.; Daikh, S. Early, intermediate and late fusion strategies for robust deep learning-based multimodal action recognition. Machine Vision and Applications 2021, 32, 121. [Google Scholar] [CrossRef]
- Dietz, S.; Altstidl, T.; Zanca, D.; Eskofier, B.; Nguyen, A. How Intermodal Interaction Affects the Performance of Deep Multimodal Fusion for Mixed-Type Time Series. In Proceedings of the 2024 International Joint Conference on Neural Networks (IJCNN), 2024; IEEE; pp. 1–8. [Google Scholar]
- Guarrasi, V.; Aksu, F.; Caruso, C.M.; Di Feola, F.; Rofena, A.; Ruffini, F.; Soda, P. A systematic review of intermediate fusion in multimodal deep learning for biomedical applications. Image and Vision Computing 2025, 105509. [Google Scholar] [CrossRef]
- Tan, H.; Bansal, M. Lxmert: Learning cross-modality encoder representations from transformers. arXiv 2019, arXiv:1908.07490. [Google Scholar] [CrossRef]
- Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell: Neural image caption generation with visual attention. In Proceedings of the International conference on machine learning. PMLR, 2015; pp. 2048–2057. [Google Scholar]
- Katharopoulos, A.; Vyas, A.; Pappas, N.; Fleuret, F. Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention. In Proceedings of the Proceedings of the 37th International Conference on Machine Learning; III, H.D.; Singh, A., Eds. PMLR, 13–18 Jul 2020, Vol. 119, Proceedings of Machine Learning Research; pp. 5156–5165.
- Shen, Z.; Zhang, M.; Zhao, H.; Yi, S.; Li, H. Efficient Attention: Attention With Linear Complexities. In Proceedings of the Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), January 2021; pp. 3531–3539. [Google Scholar]
- Zhu, L.; Liao, B.; Zhang, Q.; Wang, X.; Liu, W.; Wang, X. Vision mamba: efficient visual representation learning with bidirectional state space model. In Proceedings of the Proceedings of the 41st International Conference on Machine Learning. JMLR.org, 2024; p. ICML’24. [Google Scholar]
- Chen, J.; Xu, S.; Chen, Z. Convolutional neural network for classifying space target of the same shape by using RCS time series. IET Radar, Sonar & Navigation 2018, 12, 1268–1275. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Zhang, Q.; Kang, L.; Luo, Y.; Zhang, L. End-to-end recognition of similar space cone–cylinder targets based on complex-valued coordinate attention networks. IEEE Transactions on Geoscience and Remote Sensing 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Ertin, E.; Austin, C.D.; Sharma, S.; Moses, R.L.; Potter, L.C. GOTCHA experience report: three-dimensional SAR imaging with complete circular apertures. In Proceedings of the Algorithms for Synthetic Aperture Radar Imagery XIV; Zelnio, E.G., Garber, F.D., Eds.; International Society for Optics and Photonics, SPIE, 2007; Vol. 6568, p. 656802. [Google Scholar] [CrossRef]
- TREATY, N.A. Target Identification and Recognition using RF Systems.
- Geffrin, J.M.; Sabouroux, P.; Eyraud, C. Free space experimental scattering database continuation: Experimental set-up and measurement precision. inverse Problems 2005, 21, S117. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Zhang, L.; Kang, L.; Wang, H.; Luo, Y.; Zhang, Q. Space Target Classification With Corrupted HRRP Sequences Based on Temporal–Spatial Feature Aggregation Network. IEEE Transactions on Geoscience and Remote Sensing 2023, 61, 1–18. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Xu, Z.; Jin, X.; Su, F. MSDP-Net: A Multi-Scale Domain Perception Network for HRRP Target Recognition. Remote Sensing 2025, 17. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Advances in neural information processing systems 2017, 30. [Google Scholar]











| Model | Modality | 9° Split | 18° Split | 36° Split | 45° Split | 90° Split | 180° Split |
|---|---|---|---|---|---|---|---|
| Ours (HRRP-only) | HRRP | 54.22 | 60.26 | 56.15 | 54.22 | 49.74 | 45.62 |
| 1D-Mamba [25] | HRRP | 65.05 | 60.78 | 58.49 | 60.16 | 51.35 | 42.34 |
| Conformer [23] | HRRP | 74.43 | 75.00 | 68.54 | 61.93 | 47.45 | 52.45 |
| MSDP-Net [59] | HRRP | 73.70 | 71.56 | 67.66 | 69.48 | 49.48 | 43.96 |
| Point-Transformer [20] | Point Cloud | 83.12 | 77.50 | 67.55 | 71.82 | 39.79 | 37.81 |
| DGCNN [40] | Point Cloud | 89.74 | 90.16 | 82.92 | 76.25 | 51.77 | 41.56 |
| PointMLP [41] | Point Cloud | 79.84 | 70.52 | 71.41 | 66.93 | 46.88 | 42.97 |
| PointMamba [42] | Point Cloud | 93.33 | 91.51 | 81.93 | 79.90 | 60.57 | 53.80 |
| Point-HRRP-Net (Ours) | Point Cloud + HRRP | 97.51 | 93.84 | 85.57 | 87.29 | 66.34 | 57.67 |
| Fusion Strategy | Params (M) | 9° Split (F1) | 45° Split (F1) | 90° Split (F1) | Latency (ms) | FLOPs (G) |
|---|---|---|---|---|---|---|
| Concatenation | 0.8271 | 93.12 | 80.83 | 51.77 | 5.9959 | 0.6273 |
| Addition | 0.7942 | 94.06 | 83.44 | 60.26 | 5.3409 | 0.6272 |
| Product | 0.7942 | 95.83 | 82.40 | 54.69 | 5.3470 | 0.6272 |
| Gating | 0.8436 | 95.73 | 81.77 | 58.44 | 5.9708 | 0.6273 |
| Self-Attention [60] | 0.8271 | 95.94 | 84.17 | 47.81 | 6.9912 | 0.6273 |
| Linear-Attention [50] | 0.9277 | 93.91 | 81.72 | 53.70 | 8.0915 | 0.6448 |
| Efficient-Attention [51] | 0.9277 | 91.72 | 84.58 | 48.54 | 7.6187 | 0.6448 |
| Bi-Mamba [52] | 0.8275 | 95.68 | 82.29 | 46.09 | 8.5317 | 0.6275 |
| Bi-CA (Ours) | 1.0272 | 97.47 | 85.09 | 65.54 | 8.7573 | 0.6624 |
| HRRP Extractor | PC Extractor | Params (M) | FLOPs (G) | 9° Split (F1) | 45° Split (F1) | 90° Split (F1) | Latency (ms) |
|---|---|---|---|---|---|---|---|
| CNN | DGCNN | 1.0272 | 0.6570 | 96.51 | 85.36 | 46.77 | 6.7711 |
| RNN | DGCNN | 1.1203 | 0.7194 | 85.31 | 66.15 | 49.06 | 7.1118 |
| LSTM [17] | DGCNN | 1.3705 | 0.7683 | 92.40 | 74.38 | 56.77 | 7.2894 |
| GRU [18] | DGCNN | 1.5002 | 0.8020 | 95.00 | 79.58 | 46.51 | 6.7926 |
| 1D-Mamba [25] | DGCNN | 1.0247 | 0.7072 | 96.56 | 74.32 | 50.10 | 6.5243 |
| Conformer [23] | DGCNN | 1.1850 | 0.7888 | 95.89 | 83.13 | 58.02 | 7.5473 |
| CNN-Transformer | PointNet [35] | 0.6191 | 0.0950 | 92.81 | 82.19 | 47.60 | 9.0498 |
| CNN-Transformer | PointNet++ [36] | 0.5733 | 1.2934 | 88.70 | 80.10 | 48.02 | 113.3443 |
| CNN-Transformer | PointMLP [41] | 1.6522 | 0.4754 | 84.53 | 73.65 | 54.90 | 14.7948 |
| CNN-Transformer | PointMamba [42] | 0.5422 | 0.0871 | 91.87 | 83.54 | 57.19 | 13.8087 |
| CNN-Transformer (Ours) | DGCNN (Ours) | 1.0272 | 0.6624 | 97.47 | 85.09 | 65.54 | 8.7573 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
