Preprint
Article

This version is not peer-reviewed.

Point-HRRP-Net: A Deep Fusion Framework via Bi-Directional Cross-Attention for Robust Radar Object Classification in Remote Sensing

  † These authors contributed equally to this work.

Submitted:

09 January 2026

Posted:

12 January 2026

You are already at the latest version

Abstract
Robust radar object classification is a challenging task, primarily due to the aspect sensitivity limitation of one-dimensional High-Resolution Range Profile (HRRP) data. To address this, we propose Point-HRRP-Net. This multi-modal framework integrates HRRP with 3D LiDAR point clouds via a Bi-Directional Cross-Attention (Bi-CA) mechanism to enable deep feature interaction. Since paired real-world data is scarce, we constructed a high-fidelity simulation dataset to validate our approach. Experiments conducted under strict angular separation demonstrated that Point-HRRP-Net consistently outperformed single-modality baselines. Our results also verified the effectiveness of Dynamic Graph CNN (DGCNN) for feature extraction and highlighted the high inference speed and the potential of Mamba- based architectures for future efficient designs. Finally, this work validates the feasibility of the proposed approach in simulated environments, establishing a foundation for robust object classification in real-world scenarios.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated