Submitted:
09 January 2026
Posted:
12 January 2026
You are already at the latest version
Abstract
Agri-food industries generate substantial quantities of side streams such as peels, pods, seeds, and leaves. Traditionally regarded as waste, these by-products are now recognized as rich sources of bioactive compounds—often at higher concentrations than those found in edible plant parts. Their recovery reduces environmental impact and enables the development of sustainable ingredients for food and health-related applications, in line with circular economy principles. This study presents the design and metabolomic characterization of a novel lyophilized extract derived from Mediterranean and locally cultivated plant-based by-products (named BIOMEDEX), including orange, lemon, olive leaves, carob pods, shiitake mushroom, and salicornia. A multiplatform metabolomics approach was applied, combining high-resolution UPLC-QTOF-MS, UHPLC-QTRAP-MS, SPME-GC-MS, and 1H-NMR spectroscopy to comprehensively profile phytochemicals, nutrients, and volatile organic compounds (VOCs). The extract was found to be rich in flavonoids (e.g., luteolin-7-O-glucoside, hesperidin, eriocitrin), phenolic acids, amino acids (e.g., proline, GABA), organic acids (e.g., malic and citric acid), and over 40 VOCs associated with antioxidant and sensory functions. Notably, complementary enrichment of these compounds suggest potential health-promoting properties. These findings support the formulation of a multifunctional plant-based ingredient and reinforce the value of integrating diverse agro-industrial by-products into sustainable, health-oriented food solutions.
Keywords:
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Designing a New Lyophilized Extract (BIOMEDEX)
2.3. Extraction of the Phytochemicals Present in BIOMEDEX
2.4. UPLC–QTOF-MS Untargeted Analysis of Phytochemicals
2.5. UHPLC–QTRAP-MS Targeted Analysis of Phytochemicals
2.6. 1H-NMR Analysis of Nutrients and Primary Metabolites
2.7. SPME-GC–MS Analysis of VOCs Profile
2.8. Data Treatment
3. Results and Discussion
3.1. Phytochemical Profiling: Integration of High-Resolution and High-Sensitivity Platforms
| Number | Metabolites | RT | Polarity | Formula | Experimental m/z | MS/MS Fragment | Concentration (mg/capsule d.w.) | Concentration (mg/g d.w.) | % | Platform |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Gallic acid* | 6,7 | Negative | C7H6O5 | 169.0 | 124.9 | 3.0±0.4 | 9.9±1.4 | 1.5 | HS |
| 2 | Gallocatechin* | 9,1 | Positive | C15H14O7 | 307.1 | 139.0 | 0.4±0.1 | 1.4±0.3 | 0.3 | HS |
| 3 | Catechin* | 11,6 | Positive | C15H14O6 | 291.0 | 139.0 | 0.8±0.1 | 2.6±0.3 | 0.6 | HS |
| 4 | p-coumaric acid* | 11,8 | Negative | C9H8O3 | 163,0 | 118,9 | 3.2±0.3 | 10.6±0.9 | 1.1 | HS |
| 5 | Vicenin-2 | 12,1 | Positive | C27H30O15 | 595,1685 | † | - | - | 1.3 | HR |
| 6 | Vanillic acid* | 12,2 | Negative | C8H8O4 | 167.1 | 151.9 | 0.5±0.1 | 1.7±0.3 | 0.2 | HS |
| 7 | Stellarin-2 | 12,5 | Positive | C28H32O16 | 625,1784 | 505,1354 | - | - | 0.6 | HR |
| 8 | Caffeic acid* | 13,1 | Negative | C9H8O4 | 179.0 | 135.0 | 0.5±0.1 | 1.7±0.3 | 0.3 | HS |
| 9 | Rutin* | 13,7 | Negative | C27H30O16 | 609,1 | 301.0 | 6.5±0.5 | 21.5±1.7 | 3.3 | HS |
| 10 | Eriocitrin* | 13,8 | Negative | C27H32O15 | 595.1 | 286.9 | 24.2±1.1 | 79.9±3.6 | 12.6 | HS |
| 11 | Verbascoside | 14,0 | Positive | C29H36O15 | 625,2122 | † | - | - | 0.1 | HR |
| 12 | Orientin | 14,1 | Positive | C21H20O11 | 449,1094 | 413,1847 | - | - | 2.6 | HR |
| 13 | Luteolin-7-O-glucoside* | 14,2 | Negative | C21H20O11 | 447,0 | 285,0 | 45.1±3.1 | 148.8±10.2 | 21.7 | HS |
| 14 | Neoeriocitrin* | 14,1 | Negative | C27H32O15 | 595.1 | 286.9 | 0.5±0.1 | 1.7±0.3 | 0.1 | HS |
| 15 | Scoparin | 14,3 | Positive | C22H22O11 | 463,1239 | † | - | - | 0.8 | HR |
| 16 | Rhoifolin | 14,5 | Positive | C27H30O14 | 579,1716 | 379,0961 | - | - | 1.2 | HR |
| 17 | Naringin | 14,6 | Positive | C27H32O14 | 581,1872 | 273,0759 | - | - | 1.4 | HR |
| 18 | Diosmin | 14,9 | Positive | C28H32O15 | 609,1823 | 301,0707 | - | - | 0.8 | HR |
| 19 | Hesperidin* | 15,0 | Negative | C28H34O15 | 609,2 | 301,0 | 34.2±2.8 | 112.9±9.2 | 15.7 | HS |
| 20 | Vitexin | 15,1 | Positive | C21H20O10 | 433,1134 | † | - | - | 1.5 | HR |
| 21 | Benzoic acid* | 15,2 | Negative | C7H6O2 | 286.9 | 76.9 | 3.2±0.2 | 10.6±0.9 | 2.0 | HS |
| 22 | Ellagic acid* | 15,4 | Negative | C14H6O8 | 301.2 | 228.9 | 0.3±0.1 | 0.9±0.3 | 0.1 | HS |
| 23 | Nomilin | 15,6 | Positive | C28H34O9 | 515,2283 | † | - | - | 0.3 | HR |
| 24 | Oleuropein | 16,1 | Positive | C25H32O13 | 541,1931 | 379,1389 | - | - | 4.9 | HR |
| 25 | Poncirin | 16,9 | Positive | C28H34O14 | 595,2031 | † | - | - | 0.9 | HR |
| 26 | Quercetin* | 17,7 | Negative | C15H10O7 | 301.0 | 150.9 | 3.3±0.3 | 10.9±0.9 | 0.4 | HS |
| 27 | Sinensetin* | 18,2 | Negative | C20H20O7 | 373.1 | 312.0 | 6.8±0.4 | 22.4±1.3 | 3.5 | HS |
| 28 | Naringenin* | 18,5 | Positive | C15H12O5 | 273.0 | 153.0 | 0.3±0.1 | 0.9±0.3 | 0.1 | HS |
| 29 | Nobiletin* | 19,3 | Positive | C21H22O8 | 403.0 | 373.0 | 10.7±1.1 | 35.3±3.3 | 4.8 | HS |
| 30 | 3,5,7,3’,4’-Pentamethoxyflavone | 19,5 | Positive | C20H20O7 | 373,1309 | 329,1019 | - | - | 2.0 | HR |
| 31 | Limonin | 19,7 | Positive | C26H30O8 | 471,2021 | 425,1960 | - | - | 1.7 | HR |
| 32 | Isorhamnetin* | 19,9 | Negative | C16H12O7 | 315.0 | 299.9 | 0.1±0.0 | 0.3±0.0 | 0.1 | HS |
| 33 | Apigenin* | 20,1 | Positive | C15H10O5 | 271.0 | 153.0 | 1.1±0.1 | 3.3±0.3 | 0.5 | HS |
| 34 | 6,7,8,4’-Tetramethoxyflavone | 20,2 | Positive | C19H18O6 | 343,1196 | † | - | - | 5.2 | HR |
| 35 | 3,5,6,7,8,3’,4’-Heptamethoxyflavone | 20,4 | Positive | C22H24O9 | 433,1510 | 418,1260 | - | - | 3.2 | HR |
| 36 | Tangeretin* | 20,7 | Positive | C20H20O7 | 373,1 | 343,1 | 3.5±0.2 | 11.6±0.7 | 2.2 | HS |
| 37 | Isosakuranetin* | 21,5 | Positive | C16H14O5 | 287.0 | 153.1 | 3.0±0.3 | 9.9±0.9 | 0.4 | HS |
3.2. Metabolomics Multiplatform: 1H-NMR Analysis of Nutrients and Primary Metabolites
| Metabolites | Concentration (mg/g d.w.) |
|---|---|
| 4-Aminobutyrate | 2.5 ± 0.9 |
| Acetate | 5.8 ± 0.5 |
| Alanine | 14.9 ± 0.7 |
| Arginine | 33.5 ± 12.9 |
| Ascorbate | 12.7 ± 0.1 |
| Asparagine | 28.5 ± 0.5 |
| Aspartate | 28.8 ± 3.5 |
| Betaine | 53.4 ± 1.9 |
| Choline | 10.2 ± 0.2 |
| Citrate | 189.1 ± 29.0 |
| Formate | 1.1 ± 0.0 |
| Fructose | 761.0 ± 23.5 |
| Fumarate | 2.8 ± 0.7 |
| Glucose | 570.7 ± 57.3 |
| Glutamate | 28.3 ± 1.9 |
| Glutamine | 21.0 ± 1.0 |
| Isoleucine | 6.3 ± 0.7 |
| Lactate | 6.5 ± 0.9 |
| Leucine | 6.3 ± 0.7 |
| Malate | 86.9 ± 14.3 |
| Mannitol | 148.7 ± 6.3 |
| Methylguanidine | 1.8 ± 3.5 |
| Myo-Inositol | 220.5 ± 38.7 |
| Ornithine | 19.0 ± 1.2 |
| Phenylalanine | 3.9 ± 0.6 |
| Proline | 44.2 ± 0.3 |
| Quinic acid | 202.9 ± 31.9 |
| Quinone | 10.4 ± 3.3 |
| Sucrose | 927.2 ± 415.1 |
| Trehalose | 164.3 ± 637.9 |
| Tryptophan | 4.9 ± 66.7 |
| Tyrosine | 4.4 ± 0.5 |
| Valine | 13.7 ± 3.4 |
3.3. Metabolomics Multiplatform: SPME-GC–MS Analysis of VOCs Profile
3.4. Integrative Discussion: Functional Potential and Scientific Relevance of the Multimatrix Extract
3.5. Comparative Discussion of Analytical Platforms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galanakis, C.M. Phenolic compounds from olive mill wastewater: Recent advances in their recovery and applications. In Food Waste Recovery; Elsevier: Amsterdam. The Netherlands, 2018; pp. 321–348. [Google Scholar]
- de Souza, V.R.; Pereira, P.A.P.; da Silva, T.L.T.; de Oliveira Lima, L.C.; Pio, R.; Queiroz, F. Sustainable use of fruit and vegetable by-products: Bioactive compounds, processing, and applications. Food Rev. Int. 2020, 36, 413–447. [Google Scholar]
- Jahurul, M.H.A.; Zaidul, I.S.M.; Ghafoor, K.; Al-Juhaimi, F.Y.; Nyam, K.L.; Norulaini, N.A.N.; Omar, A.K.M. Mango (Mangifera indica L.) by-products and their valuable components: A review. Food Chem. 2015, 183, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Barba, F.J.; Putnik, P.; Kovačević, D.B.; Poojary, M.M.; Koubaa, M.; Roohinejad, S.; Lorenzo, J.M. Current and innovative emerging technologies for the recovery of valuable compounds from foods and by-products: A review. Trends Food Sci. Technol. 2017, 67, 162–177. [Google Scholar]
- United States Department of Agriculture; Foreign Agricultural Service. Citrus: World Markets and Trade. December 2021. Available online: https://apps.fas.usda.gov/psdonline/circulars/citrus.pdf.
- Monteiro, G.C.; Minatel, I.O.; Pimentel Junior, A.; Gomez-Gomez, H.A. Bioactive compounds and antioxidant capacity of grape pomace flours. LWT - Food Sci. Technol. 2021, 135, 110053. [Google Scholar] [CrossRef]
- Fernández-Bedmar, Z.; Alonso-Moraga, Á.; de la Rosa, O.; Muñoz-Serrano, A.; Gallardo-Casas, B.; Pérez-Aparaicio, J.; Moreno, F.J.; Campos, R.; Haro-Bailón, A.; Font, R. Antioxidant and genotoxic activity of various extracts from the edible seaweed Ulva rigida (Chlorophyta). J. App. Phycol. 2019, 31, 2055–2065. [Google Scholar]
- Gómez-Mejía, E.; Sacristán, I.; Rosales-Conrado, N. Relationship between physicochemical composition and antioxidant capacity of fruit peels. Molecules 2023, 28, 1624. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Ahmad, I.; Ansari, M.I.; Akhtar, M.; Arshad, M.; Abidi, S.H. Therapeutic potential of citrus flavonoids against viral diseases: A review. Molecules 2021, 26, 4094. [Google Scholar]
- Clodoveo, M.L.; Crupi, P.; Annunziato, A.; Corbo, F. Innovative extraction technologies for development of functional ingredients based on polyphenols from olive leaves. Foods 2021, 11, 103. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Crupi, P.; Muraglia, M.; Corbo, F. Ultrasound assisted extraction of polyphenols from ripe carob pods (Ceratonia siliqua L.): Combined designs for screening and optimizing the processing parameters. Foods 2022, 11, 284. [Google Scholar] [CrossRef]
- Loullis, A.; Pinakoulaki, E. Carob as a functional ingredient: Bioactive compounds and applications. Crit. Rev. Food Sci. Nutr. 2018, 58, 1–13. [Google Scholar]
- González, A.; Castro, C.J.; Vera, P.; Céspedes-Acuña, C.L.; Bórquez, J. Valorization of mushroom by-products as a source of bioactive compounds. Food Res. Int. 2021, 140, 110017. [Google Scholar]
- Kalac, P. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chem. 2009, 113, 9–16. [Google Scholar] [CrossRef]
- Limongelli, F.; Aresta, A.M.; Tardugno, R.; Clodoveo, M.L.; Perrone, D.; Corbo, F. Overview of the polyphenols in Salicornia: From recovery to health-promoting effect. Molecules 2022, 27, 7954. [Google Scholar] [CrossRef]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.F.; Shen, C.; Xu, X.R.; Kuang, R.D.; Guo, Y.J.; Zeng, L.S.; Gao, L.L.; Lin, X.; Xie, J.F.; Xia, E.Q.; Li, H.B. Potential of fruit wastes as natural resources of bioactive compounds. Int. J.Mol. Sci. 2012, 13, 8308–8523. [Google Scholar] [CrossRef] [PubMed]
- van der Sar, S.; Kim, H.K.; Meissner, A. Nuclear Magnetic Resonance spectroscopy for plant metabolite profiling. In The Handbook of Plant Metabolomics; Hall, R.D., Ed.; Wiley-VCH: Weinheim, Germany, 2013; Volume Chapter 3, pp. 41–66. [Google Scholar]
- Vallejo, F.; Yuste, J.E.; Teruel-Montoya, R.; Luengo-Gil, G.; Martínez, C.; Lozano, M.L.; Corral, J.; Vicente, V. First exploratory study on the metabolome from plasma exosomes in patients with paroxysmal nocturnal hemoglobinuria. Thromb. Res. 2019, 183, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Šafranko, S.; Šubarić, D.; Jerković, I.; Jokić, S. Citrus by-products as a valuable source of biologically active compounds with promising pharmaceutical, biological and biomedical potential. Pharmaceuticals 2023, 16, 1081. [Google Scholar] [CrossRef]
- Saini, R.K.; Ranjit, A.; Sharma, K.; Prasad, P.; Shang, X.; Keum, Y.-S. Bioactive compounds of citrus fruits: A review of composition and health benefits of carotenoids. flavonoids. limonoids. and terpenes. Antioxidants 2022, 11, 239. [Google Scholar] [CrossRef]
- Silla, A.; Punzo, A.; Caliceti, C.; Barbalace, M.C.; Malorni, L.; Serafini, M. The role of antioxidant compounds from citrus waste in modulating neuroinflammation: A sustainable solution. Int. J. Mol. Sci. 2025, 26, 1120. [Google Scholar] [CrossRef]
- Putnik, P.; Bursać Kovačević, D.; Režek Jambrak, A.; Barba, F.J.; Cravotto, G.; Binello, A.; Lorenzo, J.M.; Shpigelman, A. Innovative 'green' and novel strategies for the extraction of bioactive added value compounds from citrus wastes—A review. Molecules 2017, 22, 680. [Google Scholar] [CrossRef]
- Addi, M.; Elbouzidi, A.; Abid, M.; Tungmunnithum, D. An overview of bioactive flavonoids from citrus fruits. Appl. Sci. 2021, 12, 29. [Google Scholar] [CrossRef]
- Leuzzi, U.; Caristi, C. Flavonoid composition of citrus juices. Molecules 2007, 12, 1641–1673. [Google Scholar] [CrossRef]
- Martinidou, E.; Michailidis, M.; Ziogas, V.; Chatzopoulou, P.; Molassiotis, A.; Therios, I.; Tanou, G. Comparative evaluation of secondary metabolite chemodiversity of citrus genebank collection in Greece: Can the peel be more than waste? J. Agric. Food Chem. 2024, 72, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Gil, R.; Tomás-Navarro, M.; Yuste, J.E.; Crupi; Vallejo, P.F. An update on citrus polymethoxyflavones: chemistry. metabolic fate. and relevant bioactivities. Eur. Food Res. Technol. 2024, 50, 2179–2192. [Google Scholar] [CrossRef]
- Ingegneri, M.; Braghini, M.R.; Piccione, M.; De Stefanis, C.; Mandrone, M.; Chiocchio, I.; Poli, F.; Imbesi, M.; Alisi, A.; Smeriglio, A.; et al. Citrus Pomace as a Source of Plant Complexes to Be Used in the Nutraceutical Field of Intestinal Inflammation. Antioxidants 2024, 13, 869. [Google Scholar] [CrossRef]
- Barreca, D.; Bellocco, E.; Caristi, C.; Leuzzi, U.; Gattuso, G. Distribution of C-glycosyl flavones in Citrus genus. J. Agric. Food Chem. 2011, 59, 704–711. [Google Scholar]
- Nogata, Y.; Sakamoto, K.; Shiratsuchi, H.; Ishii, T.; Yano, M.; Ohta, H. Flavonoid composition of fruit tissues of citrus species. J. Agric. Food Chem. 2006, 54, 4146–4151. [Google Scholar] [CrossRef]
- Lanza, B.; Di Serio, M.G. Formulation of olive leaf extracts in functional beverages: Technological and nutraceutical aspects. Beverages 2016, 2, 17. [Google Scholar]
- Herrero, M.; Temirzoda, T.N.; Segura-Carretero, A.; Plaza, M.; Ibañez, E. New possibilities for the valorization of olive oil by-products. J. Chromatogr. A 2011, 1218, 7511–7520. [Google Scholar] [CrossRef] [PubMed]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; de la Rosa, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Determination of phenolic compounds of ‘Sikitita’ olive leaves by HPLC-DAD-TOF-MS. J. Agric. Food Chem. 2014, 62, 9261–9270. [Google Scholar]
- Yousif, A.K.; Haddad, R.H.; Al-Dalain, S.Y.A.; Abu Zarga, M.H.; Altaany, Z. Phytochemical composition and biological activities of carob (Ceratonia siliqua L.). Foods 2021, 10, 327. [Google Scholar]
- Rtibi, K.; Jabri, M.A.; Selmi, S.; Souli, A.; Sebai, H.; El-Benna, J.; Marzouki, L.; Sakly, M.; Amri, M. Nutraceutical potential of carob: Antioxidant and antidiabetic properties. Phytomedicine 2017, 23, 1227–1235. [Google Scholar]
- Rathore, H.; Prasad, S.; Sharma, S. Mushroom nutraceuticals for improved nutrition and health: An overview. Food Rev. Int. 2017, 33, 415–434. [Google Scholar]
- Ventura, Y.; Wuddineh, W.A.; Shpigel, M.; Samocha, T.M.; Klim, B.C.; Cohen, Z.; Shemer, Z.; Sagi, M. Salicornia as a model halophyte for exploring and exploiting halophytes. Front. Plant Sci. 2015, 6, 1120. [Google Scholar]
- Wasser, S.P. Medicinal mushroom science: History. current status. future trends. and unsolved problems. Int. J. Med. Mushrooms 2010, 12, 1–16. [Google Scholar] [CrossRef]
- Sánchez-Gavilán, I.; Ramírez, E.; de la Fuente, V. Phenolic composition and antioxidant properties of Salicornia species. Foods 2020, 9, 1772. [Google Scholar]
- González-Molina, E.; Domínguez-Perles, R.; Moreno, D.A.; García-Viguera, C. Natural bioactive compounds of Citrus limon for food and health. J. Pharm. Biomed. Anal. 2010, 51, 327–345. [Google Scholar] [CrossRef]
- Elbein, A.D.; Pan, Y.T.; Pastuszak, I.; Carroll, D. New insights on trehalose: A multifunctional molecule. Glycobiology 2003, 13, 17R–27R. [Google Scholar] [CrossRef]
- Obendorf, R.L.; Górecki, R.J. Soluble carbohydrates in legume seeds. Seed Sci. Res. 2012, 22, 219–242. [Google Scholar] [CrossRef]
- Nam, T.G.; Kim, D.O.; Eom, S.H.; Lee, S.H.; Lee, H.J.; Heo, H.J.; Kwon, J.Y.; Park, J.M.; Kim, Y.S. Metabolomic profiling of Lentinula edodes fruiting bodies. Food Res. Int. 2021, 141, 110146. [Google Scholar]
- Remer, T.; Manz, F. Citric acid metabolism and kidney stones. Kidney Int. 2003, 63, 1237–1245. [Google Scholar]
- Wu, J.; Wang, Y.; Sun, Y.; Dong, M.; Liu, X.; Wang, Y.; Zhang, L. L-Malic acid in energy metabolism and health. J. Funct. Foods 2016, 23, 518–529. [Google Scholar]
- ousfi, M.; Chérif, J.K.; Hachimi, L.; Donsì, F.; Ferrari, G.; Hamdi, M. Antioxidant activity of quinic acid derivatives. Food Chem. 2009, 112, 921–927. [Google Scholar]
- Szabados, L.; Savouré, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef]
- Morris, S.M. Arginine metabolism: Nitric oxide and beyond. Biochem. J. 2009, 422, 1–17. [Google Scholar]
- Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched-chain amino acids in human health. Nutrients 2018, 10, 43. [Google Scholar]
- Fernstrom. J.D. Effects of amino acid precursors on neurotransmitters. J. Nutr. Biochem. 2013, 24, 1910–1920. [Google Scholar]
- Diana, M.; Quílez, J.; Rafecas, M. GABA as functional food component. Nutrients 2014, 6, 1639–1653. [Google Scholar]
- Viglietti, M.; Bagnulo, E.; Locatelli, M.; Cordero, C. Chemical characterization of the aroma of new functional ingredients with high nutritional value: Sensomic approach. In Società Chimica Italiana; 2023. [Google Scholar]
- Kamgang Nzekoue, A.; Caprioli, G.; Sagratini, G.; Maggi, F. Development of a new functional dairy product enriched in phytosterols: The importance of food chemistry. In Book of Abstracts EuroFoodChem XX; Porto, Portugal, 2019; p. 110. [Google Scholar]
- Vichi, S.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; López-Tamames, E. Volatile compounds in virgin olive oil: Occurrence and their analytical determination. Flavour Fragr. J. 2003, 18, 3–20. [Google Scholar]
- Kalogiouri, N.P.; Manousi, N.; Rosenberg, E.; Zachariadis, G.A. Volatile profiling of functional foods by SPME-GC-MS: Recent advances and applications. Foods 2020, 9, 1575. [Google Scholar]
- Chen, X.; Liu, J.; Yang, X.; Zhao, Y.; Zhang, Y.; Li, R.; Zhang, Y. Volatile composition and aroma-active compounds of Salicornia europaea L. Food Res. Int. 2019, 116, 421–428. [Google Scholar]
- Lee, S.C.; Shibamoto, T. Antioxidant properties of aroma compounds isolated from soybeans and shiitake mushrooms. J. Agric. Food Chem. 2002, 50, 6244–6249. [Google Scholar]
| Compound | Formula | RT (min) | Source | Bioactivity / Sensory Role | References |
|---|---|---|---|---|---|
| D-Limonene | C10 H16 | 12.2 | Citrus peel dominant monoterpene | Antioxidant. antimicrobial/aroma contributor | [53,56] |
| Linalool | C10 H18 O | 24.3 | Citrus. olive oil. floral aromas | Antioxidant. antimicrobial/sedative properties | [54] |
| Acetic acid | C2 H4 O2 | 21.9 | Halophytes (Salicornia) | Contributes to acidity/aroma intensity | [57] |
| Propanoic acid. 2-methyl- | C4 H8 O2 | 25.4 | Halophytes (Salicornia) | Volatile acid with pungent note | [57] |
| Terpinen-4-ol | C10 H18 O | 25.9 | Citrus | Antimicrobial/aroma contributor | [56] |
| 5-Hepten-2-one. 6-methyl- | C8 H14 O | 17.4 | Citrus peel oils | Fresh fruity aroma | [53] |
| Nonanal | C9 H18 O | 19.3 | Olive oil. citrus | Fatty. floral aroma | [55] |
| Hexanal | C6 H12 O | 8.1 | Olive oil | Green/fresh aroma marker | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
