Preprint
Article

This version is not peer-reviewed.

Low-Threshold and Long-Term Stable Soliton Fiber Laser Using PbSe/PbS Quantum Dot-Polystyrene Composite Saturable Absorber

Submitted:

07 January 2026

Posted:

08 January 2026

You are already at the latest version

Abstract
Colloidal PbSe quantum dots are promising candidates as saturable absorbers for ultrafast fiber lasers, but their performance is often limited by surface-related defects and chemical instability, leading to aggregation under optical pumping. In this study, we present a freestanding PbSe/PbS quantum dot-polystyrene composite saturable absorber film, with PbS overcoating on PbSe to enhance surface passivation and oxidation resistance. The composite exhibits a saturation intensity of 5.76 kW·cm-2, a modulation depth of 33%, and an optical damage threshold of 13.6 mJ·cm-2. When integrated into a bidirectionally pumped erbium-doped fiber laser in the anomalous-dispersion regime, the device demonstrates self-starting soliton mode locking at an ultralow pump threshold of 6 mW, generating 1.06 ps pulses with a radio-frequency signal-to-noise ratio of approximately 65 dB. The spectra remain stable over a six-month period, showing excellent environmental and operational durability. These findings confirm that PbSe/PbS quantum dots in a polymer matrix offer a robust, low-threshold saturable absorber platform for ultrafast fiber lasers.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated