Submitted:
06 January 2026
Posted:
07 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Chemicals and Drugs
2.2. Animals
2.3. Experimental Methodology
2.4. Open Field Novelty Induced Behaviours
2.5. Y maze Spatial Working Memory
2.6. Biochemical Tests
2.6.1. Estimation of MDA Content (Lipid Peroxidation)
2.6.2. Antioxidant Status
2.6.3. Inflammatory Markers
2.7. Tissue Histology
2.8. Photomicrography
2.9. Statistical Analysis
3. Results
3.1. Effect of N-Acetyl Cysteine on Body Weight and Feed Intake
3.2. Effect of N-Acetyl Cysteine on Exploratory Behaviours in the Open-Field Box
3.3. Effect of N-Acetyl Cysteine on Self-Grooming Behaviour
3.4. Effect of N-Acetyl Cysteine on Spatial Working Memory
3.5. Effect of N-Acetyl Cysteine on Oxidative Stress Parameters and Inflammatory Cytokines
3.6. Effect of N Acetyl Cysteine on the Cerebellar Cortex Histomorphology
Discussion
Conclusion
Funding
Ethical Approval
Availability of data and materials
Competing interests
References
- Zou, Z.; Wang, H.; Uquillas, F.D.; Wang, X.; Ding, J.; Chen, H. Definition of Substance and Non-substance Addiction. Adv Exp Med Biol. 2017, 1010, 21–41. [Google Scholar] [CrossRef]
- Onaolapo, O.J.; Onaolapo, A.Y. Melatonin in drug addiction and addiction management: Exploring an evolving multidimensional relationship. World J. Psychiatry 2018, 8, 64–74. [Google Scholar] [CrossRef]
- Onaolapo, A.; Onaolapo, O. Food additives, food and the concept of ‘food addiction’: Is stimulation of the brain reward circuit by food sufficient to trigger addiction? Pathophysiology 2018, 25, 263–276. [Google Scholar] [CrossRef]
- Vujović, K.S.; Jotić, A.; Medić, B.; Srebro, D.; Vujović, A.; Žujović, J.; Opanković, A.; Vučković, S. Ketamine, an Old–New Drug: Uses and Abuses. Pharmaceuticals 2023, 17, 16. [Google Scholar] [CrossRef] [PubMed]
- Marongiu, S.; van Eijk, M.; Gresnigt, F.M.; Croes, E.A.; Franssen, E.J. Rising incidence of recreational ketamine use: Clinical cases and management in emergency settings. Toxicol. Rep. 2025, 14, 101940. [Google Scholar] [CrossRef] [PubMed]
- Onaolapo, A.; Ayeni, O.; Ogundeji, M.; Ajao, A.; Onaolapo, O.; Owolabi, A. Subchronic ketamine alters behaviour, metabolic indices and brain morphology in adolescent rats: Involvement of oxidative stress, glutamate toxicity and caspase-3-mediated apoptosis. J. Chem. Neuroanat. 2019, 96, 22–33. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Zhao, J.; Li, L.; Wang, Y.; Zhang, Y.; Li, Y.; Chen, Y.; Liu, W.; Gao, L. Administration of Ketamine Causes Autophagy and Apoptosis in the Rat Fetal Hippocampus and in PC12 Cells. Front. Cell. Neurosci. 2018, 12, 21. [Google Scholar] [CrossRef]
- Chang, C.-T.; Hseu, Y.-C.; Thiyagarajan, V.; Lin, K.-Y.; Way, T.-D.; Korivi, M.; Liao, J.-W.; Yang, H.-L. Chalcone flavokawain B induces autophagic-cell death via reactive oxygen species-mediated signaling pathways in human gastric carcinoma and suppresses tumor growth in nude mice. Arch. Toxicol. 2017, 91, 3341–3364. [Google Scholar] [CrossRef]
- Onaolapo, O.J.; Paul, T.B.; Onaolapo, A.Y. Comparative effects of sertraline, haloperidol or olanzapine treatments on ketamine-induced changes in mouse behaviours. Metab. Brain Dis. 2017, 32, 1475–1489. [Google Scholar] [CrossRef]
- Onaolapo, O.J.; Ademakinwa, O.Q.; Olalekan, T.O.; Onaolapo, A.Y. Ketamine-induced behavioural and brain oxidative changes in mice: an assessment of possible beneficial effects of zinc as mono- or adjunct therapy. Psychopharmacology 2017, 234, 2707–2725. [Google Scholar] [CrossRef] [PubMed]
- Onaolapo, A.Y.; Aina, O.A.; Onaolapo, O.J. Melatonin attenuates behavioural deficits and reduces brain oxidative stress in a rodent model of schizophrenia. Biomed. Pharmacother. 2017, 92, 373–383. [Google Scholar] [CrossRef]
- Treatment for Stimulant Use Disorders: Updated 2021 [Internet]. Rockville (MD): Substance Abuse and Mental Health Services Administration (US); 1999. (Treatment Improvement Protocol (TIP) Series, No. 33.) Chapter 3—Medical Aspects of Stimulant Use Disorders. Available online: https://www.ncbi.nlm.nih.gov/books/NBK576550/.
- Chung, A.-N.; Huang, M.-C.; Liu, T.-H.; Chang, H.-M.; Chen, P.-Y.; Liu, Y.-L.; Bavato, F. Ketamine-dependent patients with persistent psychosis have higher neurofilament light chain levels than patients with schizophrenia. Asian J. Psychiatry 2024, 100, 104167. [Google Scholar] [CrossRef]
- Strous, J.F.M.; Weeland, C.J.; van der Draai, F.A.; Daams, J.G.; Denys, D.; Lok, A.; Schoevers, R.A.; Figee, M. Brain Changes Associated With Long-Term Ketamine Abuse, A Systematic Review. Front. Neuroanat. 2022, 16, 795231. [Google Scholar] [CrossRef]
- Ding, R.; Li, Y.; Du, A.; Yu, H.; He, B.; Shen, R.; Zhou, J.; Li, L.; Cui, W.; Zhang, G.; et al. Changes in hippocampal AMPA receptors and cognitive impairments in chronic ketamine addiction models: another understanding of ketamine CNS toxicity. Sci. Rep. 2016, 6, 38771. [Google Scholar] [CrossRef]
- Liu, F.; Paule, M.G.; Ali, S.; Wang, C. Ketamine-Induced Neurotoxicity and Changes in Gene Expression in the Developing Rat Brain. Curr. Neuropharmacol. 2011, 9, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Tenório, M.C.d.S.; Graciliano, N.G.; Moura, F.; de Oliveira, A.C.M.; Goulart, M.O.F. N-Acetylcysteine (NAC): Impacts on Human Health. Antioxidants 2021, 10, 967. [Google Scholar] [CrossRef] [PubMed]
- Sahasrabudhe, S.A.; Terluk, M.R.; Kartha, R.V. N-acetylcysteine Pharmacology and Applications in Rare Diseases—Repurposing an Old Antioxidant. Antioxidants 2023, 12, 1316. [Google Scholar] [CrossRef]
- Hara, Y.; Mckeehan, N.; Dacks, P.A.; Fillit, H.M. EVALUATION OF THE NEUROPROTECTIVE POTENTIAL OF N-ACETYLCYSTEINE FOR PREVENTION AND TREATMENT OF COGNITIVE AGING AND DEMENTIA. J. Prev. Alzheimer's Dis. 2017, 4, 201–206. [Google Scholar] [CrossRef]
- Holmay, M.J.B.; Terpstra, M.; Coles, L.D.; Mishra, U.; Ahlskog, M.B.; Öz, G.; Cloyd, J.C.; Tuite, P.J. N-acetylcysteine Boosts Brain and Blood Glutathione in Gaucher and Parkinson Diseases. Clin. Neuropharmacol. 2013, 36, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Onaolapo, O.J.; Onaolapo, A.Y. Nutrition, nutritional deficiencies, and schizophrenia: An association worthy of constant reassessment. World J. Clin. Cases 2021, 9, 8295–8311. [Google Scholar] [CrossRef]
- Ajao, J.; Akinsehinwa, A.; Onaolapo, O.; Onaolapo, A. Ethanol Extract of Muira Puama (Ptychopetalum Olacoides) ameliorates Aluminium Chloride-induced changes in Behaviour and Cerebral cortex Histomorphology in Wistar Rats. 2025, 1, 22–29. [Google Scholar] [CrossRef]
- Hassan, L.; Folorunso, K.; Kehinde, E.; Afolabi, O.; Olawale, A.; Lawal, M. Dietary supplementation with Powdered Ginger root ameliorates Lead Carbonate-induced Ovarian Injuries in Adult Wistar Rats. 2025, 1, 134–139. [Google Scholar] [CrossRef]
- Onaolapo, A.Y.; Olofinnade, A.T.; Onaolapo, O.J. Anxiogenic, memory-impairing, pro-oxidant and pro-inflammatory effects of sodium benzoate in the mouse brain. The J. Psychiatry Neurol. Sci. 2021, 34, 14–22. [Google Scholar] [CrossRef]
- Onaolapo, A.; Onaolapo, O.; Nwoha, P. Methyl aspartylphenylalanine, the pons and cerebellum in mice: An evaluation of motor, morphological, biochemical, immunohistochemical and apoptotic effects. J. Chem. Neuroanat. 2017, 86, 67–77. [Google Scholar] [CrossRef]
- Słupski, J.; Mechlińska, A.; Włodarczyk, A.; Kwaśny, A.; Szarmach, J.; Słupska, A.; Cubała, W.J. Appetite measures as correlates of clinical response in mood disorders treated with ketamine: systematic review. Front. Nutr. 2025, 12, 1616859. [Google Scholar] [CrossRef] [PubMed]
- L, E.; Onaolapo, O.; Onaolapo, A. Omega-3 fatty acid reverses Ketamine-induced hyperlocomotion, memory deficit and cerebral cortex neuronal injury in rats. 2025, 1, 46–57. [Google Scholar] [CrossRef]
- Parise, E.M.; Alcantara, L.F.; Warren, B.L.; Wright, K.N.; Hadad, R.; Sial, O.K.; Kroeck, K.G.; Iñiguez, S.D.; Bolaños-Guzmán, C.A. Repeated Ketamine Exposure Induces an Enduring Resilient Phenotype in Adolescent and Adult Rats. Biol. Psychiatry 2013, 74, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, Y.; Sun, X.; Lian, B.; Sun, H.; Wang, G.; Du, Z.; Li, Q.; Sun, L. Short- and long-term antidepressant effects of ketamine in a rat chronic unpredictable stress model. Brain Behav. 2017, 7, e00749–e00749. [Google Scholar] [CrossRef]
- Melanson, B.; Leri, F. Effect of ketamine on the physiological responses to combined hypoglycemic and psychophysical stress. IBRO Neurosci. Rep. 2021, 11, 81–87. [Google Scholar] [CrossRef]
- Hurley, M.M.; Resch, J.M.; Maunze, B.; Frenkel, M.M.; A Baker, D.; Choi, S. N-acetylcysteine decreases binge eating in a rodent model. Int. J. Obes. 2016, 40, 1183–1186. [Google Scholar] [CrossRef]
- Kokkinou, M.; Ashok, A.H.; Howes, O.D. The effects of ketamine on dopaminergic function: meta-analysis and review of the implications for neuropsychiatric disorders. Mol. Psychiatry 2017, 23, 59–69. [Google Scholar] [CrossRef]
- Cherneva, D.I.; Kehayova, G.; Dimitrova, S.; Dragomanova, S. The Central Nervous System Modulatory Activities of N-Acetylcysteine: A Synthesis of Two Decades of Evidence. Curr. Issues Mol. Biol. 2025, 47, 710. [Google Scholar] [CrossRef]
- Phensy, A.; Duzdabanian, H.E.; Brewer, S.; Panjabi, A.; Driskill, C.; Berz, A.; Peng, G.; Kroener, S. Antioxidant Treatment with N-acetyl Cysteine Prevents the Development of Cognitive and Social Behavioral Deficits that Result from Perinatal Ketamine Treatment. Front. Behav. Neurosci. 2017, 11, 106–106. [Google Scholar] [CrossRef]
- Onaolapo, OJ; Onaolapo, YAY; Akanmu, MA; Olayiwola, G. Caffeine and sleep-deprivation mediated changes in open-field behaviours, stress response and antioxidant status in mice. Sleep Science 2016, 9(3), 236–43. [Google Scholar] [CrossRef] [PubMed]
- Popik, P.; Cyrano, E.; Piotrowska, D.; Holuj, M.; Golebiowska, J.; Malikowska-Racia, N.; Potasiewicz, A.; Nikiforuk, A. Effects of ketamine on rat social behavior as analyzed by DeepLabCut and SimBA deep learning algorithms. Front. Pharmacol. 2024, 14, 1329424. [Google Scholar] [CrossRef] [PubMed]
- Roussy, M.; Luna, R.; Duong, L.; Corrigan, B.; Gulli, R.A.; Nogueira, R.; Moreno-Bote, R.; Sachs, A.J.; Palaniyappan, L.; Martinez-Trujillo, J.C. Ketamine disrupts naturalistic coding of working memory in primate lateral prefrontal cortex networks. Mol. Psychiatry 2021, 26, 6688–6703. [Google Scholar] [CrossRef]
- Tang, W.K.; Lau, C.G.; Ungvari, G.S.; Lin, S.-K.; Lane, H.-Y. Recovery of cognitive functioning following abstinence from ketamine. Addict. Behav. 2019, 99, 106081. [Google Scholar] [CrossRef]
- A Morgan, C.J.; Mofeez, A.; Brandner, B.; Bromley, L.; Curran, H.V. Acute Effects of Ketamine on Memory Systems and Psychotic Symptoms in Healthy Volunteers. Neuropsychopharmacology 2003, 29, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Cherneva, D.I.; Kehayova, G.; Dimitrova, S.; Dragomanova, S. The Central Nervous System Modulatory Activities of N-Acetylcysteine: A Synthesis of Two Decades of Evidence. Curr. Issues Mol. Biol. 2025, 47, 710. [Google Scholar] [CrossRef]
- Onaolapo, A.Y.; Onaolapo, O.J. Peripheral and Central Glutamate Dyshomeostasis in Neurodegenerative Disorders. Curr. Neuropharmacol. 2021, 19, 1069–1089. [Google Scholar] [CrossRef]
- Choudhury, D.; Autry, A.E.; Tolias, K.F.; Krishnan, V. Ketamine: Neuroprotective or Neurotoxic? Front. Neurosci. 2021, 15, 672526. [Google Scholar] [CrossRef] [PubMed]








| Groups | MDA (µm) | TAC (mM TE) |
| A: Control | 0.73±0.01 | 10.48±0.15 |
| B: NAC500 | 0.8±0.03 | 11.36±3.16 |
| C: NAC1000 | 0.68±0.01* | 12.67±0.03* |
| D: Ketamine | 15.81±0.91* | 5.88±3.63* |
| E: KET/NAC500 | 5.31±0.24*# | 26.53±2.71*# |
| F: KET/NAC1000 | 4.7±0.44*# | 17.8±2.03*# |
| Groups | IL-6 pg/ml | TNF-α pg/ml | IL-1β ng/ml | IL-10 pg/ml |
| A | 8.33±0.22 | 11.73±0.23 | 4.57±0.5 | 6.28±0.04 |
| B | 2.03±0.09* | 9.59±0.11* | 2.82±0.08* | 10.55±0.23* |
| C | 2.33±0.01* | 11.45±0.36 | 4.9±0.19 | 6.03±0.01* |
| D | 11.45±4.17* | 35.98±0.18* | 12.2±0.89* | 0.61±0.17* |
| E | 2.11±0.03*# | 14.57±0.24*# | 4.08±0.33# | 7.66±0.2*# |
| F | 2.99±0.17* | 19.24±0.36*# | 3.31±0.16*# | 7.7±0.25*# |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
