Preprint
Article

This version is not peer-reviewed.

Optimization of Alkaline Hydrolysis Method for the Extraction of Biopolymers Ferulated Arabinoxylans from Maize Bran; Purification, Identification and Their Antioxidant Activity

Submitted:

31 December 2025

Posted:

02 January 2026

You are already at the latest version

Abstract
In this study, ferulated arabinoxylans (FAXs) were extracted from maize bran by optimizing al-kaline extraction method and explored their purification, identification and antioxidant potential. The current results showed that FAXs yield ranged from 14.7 to 18.9 % from maize bran. It was found that the FAXs were mainly composed neutral sugars including xylose (21–44%), arabinose (12–30%), galactose (2.7-7.4%) and glucose (4.6–9.4%), with an A/X ratio of 0.68–0.74. In addition, FAXs extracts showed significantly (p < 0.05) high content of ferulic acid in bound form as com-pared to free form. Furthermore, biopolymers FAXs possess powerful radical scavenging prop-erties due to their polyphenolic content and structural characteristics. FTIR spectra of maize bran extracted FAXs exhibited the presence of polysaccharide compounds. The corresponding bands were related to glycosidic linkage, which is assigned to the C-OH bend vibration in FAX. In functional characteristics, FAXs showed high water holding capacity, emulsion properties and emulsion stability in all treatments. In current research, FAXs have been comprehensively char-acterized, and several promising applications across the food, pharmaceutical, and agricultural industries can be explored based on these findings.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated