Submitted:
31 December 2025
Posted:
01 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Culture Condition
2.1. Genome Sequencing and Assembly
2.4. Gene Content Analysis
2.5. Phylogenetic Analysis
3. Results
3.1. 16S Phylogenetic Analysis
3.2. Genome Analysis of S. Cohnii 148-XN2B 18.2
3.3. Gene Annotation and Functional Annotation
3.4. Identification of Bacteriocin Genes in S. cohnii 148-XN2B 18.2
3.5. Phylogenetic Relationship and Comparative Genomic Analysis of S. cohnii and S. arlettae
4. Conclusions
Author Contributions
Data Availability Statement
Acknowledgments
References
- Michael, C. A.; Dominey-Howes, D.; Labbate, M. The antimicrobial resistance crisis: Causes, consequences, and management. Front Public Health 2014, 2, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Natsuga, K. Epidermal barriers. Cold Spring Harb Perspect Med 2014, 4, a018218. [Google Scholar] [CrossRef] [PubMed]
- Nagase, N.; Sasaki, A.; Yamashita, K. Isolation and species distribution of staphylococci from animal and human skin. Journal of Veterinary Medical Science 2002, 64, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Diep, D.; Nes, I. Ribosomally Synthesized Antibacterial Peptides in Gram Positive Bacteria. Curr Drug Targets 2005, 3, 107–122. [Google Scholar] [CrossRef]
- Jack, R. W.; Tagg, J. R.; Ray, B. Bacteriocins of gram-positive bacteria. Microbiol Rev 1995, 59, 171–200. [Google Scholar] [CrossRef]
- Daw, M. A.; Falkiner, F. R.; Background, A. Nature, Function and Structure; Bacteriocins, 1997; p. 4328. [Google Scholar]
- Antoshina, D. V; Balandin, S. V; Ovchinnikova, T. V. Structural Features, Mechanisms of Action, and Prospects for Practical Application of Class II Bacteriocins. Biochemistry (Moscow) 2022, 87, 1387–1403. [Google Scholar] [CrossRef]
- Solis-Balandra, M. A.; Sanchez-Salas, J. L. Classification and Multi-Functional Use of Bacteriocins in Health, Biotechnology, and Food Industry. Antibiotics 2024, 13. [Google Scholar] [CrossRef]
- Baker, J. S. Comparison of Various Methods for Differentiation of Staphylococci and Micrococci. J Clin Microbiol 1984. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Wick, R. R.; Judd, L. M.; Gorrie, C. L.; Holt, K. E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017, 13, 1–22. [Google Scholar] [CrossRef]
- Krasnov, G. S.; Pushkova, E. N.; Novakovskiy, R. O. High-Quality Genome Assembly of Fusarium oxysporum f. sp. lini. Front Genet 2020, 11, 959. [Google Scholar] [CrossRef] [PubMed]
- Zimin, A. V; Salzberg, S. L. The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS Comput Biol 2020, 16, e1007981. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Parks, D. H.; Imelfort, M.; Skennerton, C. T.; Hugenholtz, P.; Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015, 25, 1043–1055. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Simão, F. A.; Waterhouse, R. M.; Ioannidis, P.; Kriventseva, E. V; Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J Mol Biol 2016, 428, 726–731. [Google Scholar] [CrossRef]
- Kassambara, A. ggplot2 Based Publication Ready Plots. Available online: https://rpkgs.datanovia.com/ggpubr/ (accessed on 31 Oct 2024 2023).
- Wickham, H; Chang, W; Henry, L; Pedersen, TL; Takahashi, K; Wilke, C; Woo, K; Yutani, H; Dunnington, D; Posit, P. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. Available online: https://cran.r-project.org/web/packages/ggplot2/index.html (accessed on 16 Jun 2024 2023).
- Camacho, C.; Coulouris, G.; Avagyan, V. BLAST+: architecture and applications. BMC Bioinformatics 2009, 10, 421. [Google Scholar] [CrossRef]
- Akhter, S.; Miller, J. H. BPAGS: a web application for bacteriocin prediction via feature evaluation using alternating decision tree, genetic algorithm, and linear support vector classifier. Frontiers in Bioinformatics 2024, 3, 1284705. [Google Scholar] [CrossRef]
- Thanh Ha, D. T.; Kim Thoa, L. T.; Phuong Thao, T. T. Production of extracellular agarase from Priestia megaterium AT7 and evaluation on marine algae hydrolysis. Enzyme Microb Technol 2024, 172, 110339. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.-T.; Schmidt, H. A.; Von Haeseler, A.; Minh, B. Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol Biol Evol 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Emms, D. M.; Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019, 20, 238. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Hancock, J. M.; Bishop, M. J. EMBOSS (The E uropean M olecular B iology O pen S oftware S uite). In Dictionary of bioinformatics and computational biology; 2004. [Google Scholar]
- Gilchrist, C. L. M.; Chooi, Y.-H. clinker & clustermap.js: automatic generation of gene cluster comparison figures. In Bioinformatics; Robinson, P., Ed.; 2021; Volume 37, pp. 2473–2475. [Google Scholar]
- Yu, G.; Smith, D. K.; Zhu, H.; Guan, Y.; Lam, T. T. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. In Methods Ecol Evol; McInerny, G., Ed.; 2017; Volume 8, pp. 28–36. [Google Scholar]
- Onyango, L. A.; Alreshidi, M. M. Adaptive Metabolism in Staphylococci: Survival and Persistence in Environmental and Clinical Settings. J Pathog 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Solis-Balandra, M. A.; Sanchez-Salas, J. L. Classification and Multi-Functional Use of Bacteriocins in Health, Biotechnology, and Food Industry. Antibiotics 2024, 13. [Google Scholar] [CrossRef]
- Pérez-Ramos, A.; Madi-Moussa, D.; Coucheney, F.; Drider, D. Current knowledge of the mode of action and immunity mechanisms of lab-bacteriocins. Microorganisms 2021, 9. [Google Scholar] [CrossRef]
- Gargis, S. R.; Gargis, A. S.; Heath, H. E. Zif, the zoocin A immunity factor, is a FemABX-like immunity protein with a novel mode of action. Appl Environ Microbiol 2009, 75, 6205–6210. [Google Scholar] [CrossRef]
- Sano, Y.; Kageyama, M. Purification and properties of an S-type pyocin, pyocin AP41. J Bacteriol 1981, 146, 733–739. [Google Scholar] [CrossRef]
- Le, M. N.-T.; Nguyen, T. H.-H.; Trinh, V. M. Comprehensive Analysis of Bacteriocins Produced by the Hypermucoviscous Klebsiella pneumoniae Species Complex. Microbiol Spectr 2023, 11, 1–20. [Google Scholar] [CrossRef]
- Tahara, T.; Kanatani, K.; Yoshida, K.; Miura, H.; Sakamoto, M.; Oshimura, M. Purification and some properties of acidocin 8912, a novel bacteriocin produced by Lactobacillus acidophilus TK8912. Biosci Biotechnol Biochem 1992, 56, 1212–1215. [Google Scholar] [CrossRef] [PubMed]
- Cascales, E.; Buchanan, S. K.; Duché, D. Colicin Biology. Microbiology and Molecular Biology Reviews 2007, 71, 158–229. [Google Scholar] [CrossRef]
- Guasch, J. F.; Enfedaque, J.; Ferrer, S.; Gargallo, D.; Regué, M. Bacteriocin 28b, a chromosomally encoded bacteriocin produced by most Serratia marcescens biotypes. Res Microbiol 1995, 146, 477–483. [Google Scholar] [CrossRef]
- Alvarez-Cisneros, Y.; Espuñes, T. Enterocins: Bacteriocins with applications in the food industry. Formatex.Info 2011, 1330–1341. [Google Scholar]
- Arnison, P. G.; Bibb, M. J.; Bierbaum, G. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 2013, 30, 108–160. [Google Scholar] [CrossRef]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin Microbiol Rev 2014, 27, 870–926. [Google Scholar] [CrossRef]
- Schleifer, K. H.; Kilpper-Bälz, R.; Devriese, L. A. Staphylococcus arlettae sp. nov., S. equorum sp. nov. and S. k1oosii sp. nov.: Three New Coagulase-Negative, Novobiocin-Resistant Species from Animals. Syst Appl Microbiol 1984, 5, 501–509. [Google Scholar] [CrossRef]
- Newstead, L. L.; Varjonen, K.; Nuttall, T.; Paterson, G. K. Staphylococcal-produced bacteriocins and antimicrobial peptides: Their potential as alternative treatments for staphylococcus aureus infections. Antibiotics 2020, 9, 1–19. [Google Scholar] [CrossRef] [PubMed]





| Strain | S. cohnii 18.2 |
|---|---|
| Genomic size | 2,768,657 |
| G + C content | 32.7%. |
| Number of ORFs | 2676 |
| Gene | 2756 |
| Number of tRNA | 60 |
| Number of rRNA | 19 |
| Number of tm RNA | 1 |
| Number of repeat regions | 4 |
| No | Gene id | Reference bacteriocin ID | Class & Name | Per. Ident (%) | Query coverage (%) |
| 1 | WH1322402A02_00901_gene | NP_604414.1 | Class II Acidocin 8912 |
33.3 | 95.2 |
| 2 | WH1322402A02_02122_gene | AAD28234.1 | Class II: Enterocin B | 27.7 | 91.5 |
| 3 | WH1322402A02_02267_gene | WP_120446043.1 | Class I: RiPP (Ribosomally synthesized and post-translationally modified peptides) | 31.6 | 93.9 |
| 4 | WH1322402A02_02390_gene | CAA44310.1 | Class II: Bacteriocin 28b | 31.3 | 98.5 |
| 5 | WH1322402A02_01720_gene | Class II: Colicin V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
