Submitted:
31 December 2025
Posted:
31 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Life Cycle
3. Mutation
4. Ploidy
5. Recombination
6. Future Directions
7. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Darwin, C. The origin of species. William Collins. (2011).
- Avery, O.T.; MacLeod, C.M.; McCarty, M. Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types. in Die Entdeckung der Doppelhelix: Die grundlegenden Arbeiten von Watson, Crick und anderen (ed. Nickelsen, K.) 97–120 (Springer, Berlin, Heidelberg, 2017). Nickelsen, K. (Ed.). [CrossRef]
- Kimura, M. On the evolutionary adjustment of spontaneous mutation rates. Genet. Res. 1967, 9, 23–34. [Google Scholar] [CrossRef]
- King, J.L.; Jukes, T.H. Non-Darwinian evolution. Science 1969, 164, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Gregory, T.R. Understanding Natural Selection: Essential Concepts and Common Misconceptions. Evo Edu Outreach 2009, 2, 156–175. [Google Scholar] [CrossRef]
- Marsit, S.; Dequin, S. Diversity and adaptive evolution of Saccharomyces wine yeast: A review. FEMS Yeast Res 2015, 15, fov067. [Google Scholar] [CrossRef]
- Giannakou, K.; Cotterrell, M.; Delneri, D. Genomic Adaptation of Saccharomyces Species to Industrial Environments. Front. Genet. 2020, 11. [Google Scholar] [CrossRef]
- Bai, F.-Y.; Han, D.-Y.; Duan, S.-F.; Wang, Q.-M. The Ecology and Evolution of the Baker’s Yeast Saccharomyces cerevisiae. Genes 2022, 13, 230. [Google Scholar] [CrossRef]
- McGovern, P.E.; et al. Fermented beverages of pre- and proto-historic China. Proceedings of the National Academy of Sciences (USA) 2004, 101, 17593–17598. [Google Scholar] [CrossRef]
- Parapouli, M.; Vasileiadis, A.; Afendra, A.-S.; Hatziloukas, E. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol 2020, 6, 1–31. [Google Scholar] [CrossRef]
- Lahue, C.; Madden, A.; Dunn, R.R.; Smukowski Heil, C. History and Domestication of Saccharomyces cerevisiae in Bread Baking. Front. Genet. 2020, 11. [Google Scholar] [CrossRef]
- Fröhlich-Wyder, M.-T.; Arias-Roth, E.; Jakob, E. Cheese yeasts. Yeast 2019, 36, 129–141. [Google Scholar] [CrossRef]
- Jeffery-Smith, A.; et al. Candida auris: A Review of the Literature. Clin Microbiol Rev 2018, 31, e00029-17. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action, World Health Organization. (Available, Geneva, Switzerland, 2022).
- Hazen, K.C. New and emerging yeast pathogens. Clin Microbiol Rev 1995, 8, 462–478. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Torrado, R.; Querol, A. Opportunistic Strains of Saccharomyces cerevisiae: A Potential Risk Sold in Food Products. Front Microbiol 2016, 6, 1522. [Google Scholar] [CrossRef] [PubMed]
- Clemons, K.V.; McCusker, J.H.; Davis, R.W.; Stevens, D.A. Comparative Pathogenesis of Clinical and Nonclinical Isolates of Saccharomyces cerevisiae. J Infect Dis 1994, 169, 859–867. [Google Scholar] [CrossRef]
- Denning, D.W. Global incidence and mortality of severe fungal disease. Lancet Infect Dis 2024, 24, e428–e438. [Google Scholar] [CrossRef]
- Hagen, F.; et al. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol 2015, 78, 16–48. [Google Scholar] [CrossRef]
- Dao, A.; Kim, H.Y.; Garnham, K.; et al. Cryptococcosis—A systematic review to inform the World Health Organization Fungal Priority Pathogens List. Med Mycol. 2024, 62, myae043. [Google Scholar] [CrossRef]
- Kim, J.-S.; Cha, H.; Bahn, Y.-S. Comprehensive Overview of Candida auris: An Emerging Multidrug-Resistant Fungal Pathogen. J Microbiol Biotechnol 2024, 34, 1365–1375. [Google Scholar] [CrossRef]
- Seidel, D.; et al. Impact of climate change and natural disasters on fungal infections. The Lancet. Microbe 2024, 5, e594–e605. [Google Scholar] [CrossRef]
- Souque, C.; González Ojeda, I.; Baym, M. From Petri Dishes to Patients to Populations: Scales and Evolutionary Mechanisms Driving Antibiotic Resistance. Annual Review of Microbiology 2024, 78, 361–382. [Google Scholar] [CrossRef]
- Wilson, B.A.; Garud, N.R.; Feder, A.F.; Assaf, Z.J.; Pennings, P.S. The population genetics of drug resistance evolution in natural populations of viral, bacterial and eukaryotic pathogens. Mol Ecol 2016, 25, 42–66. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lin, J.; Fan, Y.; Lin, X. Life Cycle of Cryptococcus neoformans. Annu. Rev. Microbiol. 2019, 73, 17–42. [Google Scholar] [CrossRef] [PubMed]
- Herskowitz, I. Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev 1988, 52, 536–553. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; Feretzaki, M.; Sun, S.; Wang, X.; Heitman, J. Sex in fungi. Annu Rev Genet 2011, 45, 405–430. [Google Scholar] [CrossRef]
- Sun, S.; Coelho, M.A.; David-Palma, M.; Priest, S.J.; Heitman, J. The Evolution of Sexual Reproduction and the Mating-Type Locus: Links to Pathogenesis of Cryptococcus Human Pathogenic Fungi. Annu. Rev. Genet. 2019, 53, 417–444. [Google Scholar] [CrossRef]
- Gray, J.C.; Goddard, M.R. Sex enhances adaptation by unlinking beneficial from detrimental mutations in experimental yeast populations. BMC Evol Biol 2012, 12, 43. [Google Scholar] [CrossRef]
- Loewe, L.; Hill, W.G. The population genetics of mutations: Good, bad and indifferent. Philos Trans R Soc Lond B Biol Sci 2010, 365, 1153–1167. [Google Scholar] [CrossRef]
- Kunkel, T.A.; Erie, D.A. DNA Mismatch Repair. Annual Review of Biochemistry 2005, 74, 681–710. [Google Scholar] [CrossRef]
- Boyce, K.J.; et al. Mismatch Repair of DNA Replication Errors Contributes to Microevolution in the Pathogenic Fungus Cryptococcus neoformans. mBio 2017, 8, e00595-17. [Google Scholar] [CrossRef]
- Foster, P. Methods for Determining Spontaneous Mutation Rates. in Methods in Enzymology (Academic Press ) 409, 195–213 (2006).
- Melde, R.H.; Bao, K.; Sharp, N.P. Recent insights into the evolution of mutation rates in yeast. Current Opinion in Genetics & Development 2022, 76, 101953. [Google Scholar] [CrossRef]
- Jiang, P.; et al. A modified fluctuation assay reveals a natural mutator phenotype that drives mutation spectrum variation within Saccharomyces cerevisiae. eLife 2021, 10, e68285. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M. Evolution of the mutation rate. Trends Genet 2010, 26, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.; et al. Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet 2016, 17, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Shor, E.; Fox, C.A.; Broach, J.R. The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress. PLoS Genetics 2013, 9, e1003680. [Google Scholar] [CrossRef]
- Akasaka, S.; Yamamoto, K. Hydrogen peroxide induces G:C to TA and G:C to C:G transversions in the supF gene of Escherichia coli. Molec. Gen. Genet. 1994, 243, 500–505. [Google Scholar] [CrossRef]
- Tervo, A.A. Average mutation rates of Saccharomyces cerevisiae in industrially relevant stressful environments. MSc thesis (https://urn.fi/URN:NBN:fi:aalto-202412117741.
- Li, K.-J.; et al. Spontaneous and environment induced genomic alterations in yeast model. Cell Insight 2025, 4, 100209. [Google Scholar] [CrossRef]
- Drake, J.W.; Charlesworth, B.; Charlesworth, D.; Crow, J.F. Rates of spontaneous mutation. Genetics 1998, 148, 1667–1686. [Google Scholar] [CrossRef]
- Lang, G.I.; Murray, A.W. Estimating the Per-Base-Pair Mutation Rate in the Yeast Saccharomyces cerevisiae. Genetics 2008, 178, 67–82. [Google Scholar] [CrossRef]
- Luria, S.E.; Delbrück, M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics 1943, 28, 491–511. [Google Scholar] [CrossRef]
- Zhu, Y.O.; Siegal, M.L.; Hall, D.W.; Petrov, D.A. Precise estimates of mutation rate and spectrum in yeast. Proceedings of the National Academy of Sciences 2014, 111, E2310–E2318. [Google Scholar] [CrossRef]
- Halligan, D.L.; Keightley, P.D. Spontaneous Mutation Accumulation Studies in Evolutionary Genetics. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 151–172. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J. Yeast Spontaneous Mutation Rate and Spectrum Vary with Environment. Current Biology 2019, 29, 1584–1591.e3. [Google Scholar] [CrossRef] [PubMed]
- Gou, L.; Bloom, J.S.; Kruglyak, L. The Genetic Basis of Mutation Rate Variation in Yeast. Genetics 2019, 211, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; et al. Dynamic and Heterogeneous Mutations to Fluconazole Resistance in Cryptococcus neoformans. Antimicrob Agents Chemother 2001, 45, 420–427. [Google Scholar] [CrossRef]
- Sung, W.; Ackerman, M.S.; Miller, S.F.; Doak, T.G.; Lynch, M. Drift-barrier hypothesis and mutation-rate evolution. Proc Natl Acad Sci USA 2012, 109, 18488–18492. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J. The rate and molecular spectrum of mutation are selectively maintained in yeast. Nat Commun 2021, 12, 4044. [Google Scholar] [CrossRef]
- Taddei, F.; et al. Role of mutator alleles in adaptive evolution. Nature 1997, 387, 700–702. [Google Scholar] [CrossRef]
- Lang, G.I.; Desai, M.M. The spectrum of adaptive mutations in experimental evolution. Genomics 2014, 104, 412–416. [Google Scholar] [CrossRef]
- Raynes, Y.; Sniegowski, P.D. Experimental evolution and the dynamics of genomic mutation rate modifiers. Heredity 2014, 113, 375–380. [Google Scholar] [CrossRef]
- Healey, K.R.; et al. Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. Nat Commun 2016, 7, 11128. [Google Scholar] [CrossRef]
- Billmyre, R.B.; Clancey, S.A.; Heitman, J. Natural mismatch repair mutations mediate phenotypic diversity and drug resistance in Cryptococcus deuterogattii. eLife 2017, 6, e28802. [Google Scholar] [CrossRef] [PubMed]
- Strope, P.K.; et al. The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Res. 2015, 25, 762–774. [Google Scholar] [CrossRef] [PubMed]
- Heck, J.A.; Argueso, J.L.; Gemici, Z.; et al. Negative epistasis between natural variants of the Saccharomyces cerevisiae MLH1 and PMS1 genes results in a defect in mismatch repair. Proc Natl Acad Sci USA 2006, 103, 3256–3261. [Google Scholar] [CrossRef] [PubMed]
- Skelly, D.A.; Magwene, P.M.; Meeks, B.; Murphy, H.A. Known mutator alleles do not markedly increase mutation rate in clinical Saccharomyces cerevisiae strains. Proc Biol Sci 2017, 284, 20162672. [Google Scholar] [CrossRef]
- Raghavan, V.; et al. Incompatibilities in Mismatch Repair Genes MLH1-PMS1 Contribute to a Wide Range of Mutation Rates in Human Isolates of Baker’s Yeast. Genetics 2018, 210, 1253–1266. [Google Scholar] [CrossRef]
- Lynch, M.; Sung, W.; Morris, K.; et al. A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc Natl Acad Sci USA 2008, 105, 9272–9277. [Google Scholar] [CrossRef]
- Nishant, K.T.; et al. The Baker’s Yeast Diploid Genome Is Remarkably Stable in Vegetative Growth and Meiosis. PLoS Genetics 2010, 6, e1001109. [Google Scholar] [CrossRef]
- Sharp, N.P.; Sandell, L.; James, C.G.; Otto, S.P. The genome-wide rate and spectrum of spontaneous mutations differ between haploid and diploid yeast. Proceedings of the National Academy of Sciences 2018, 115, E5046–E5055. [Google Scholar] [CrossRef]
- Dutta, A.; et al. Genome Dynamics of Hybrid Saccharomyces cerevisiae During Vegetative and Meiotic Divisions. G3 Genes|Genomes|Genetics 2017, 7, 3669–3679. [Google Scholar] [CrossRef]
- Pankajam, A.; et al. Loss of Heterozygosity and Base Mutation Rates Vary Among Saccharomyces cerevisiae Hybrid Strains. G3 Genes|Genomes|Genetics 2020, 10, 3309–3319. [Google Scholar] [CrossRef]
- Ohnishi, G.; et al. Spontaneous mutagenesis in haploid and diploid Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications 2004, 325, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Rattray, A.; Santoyo, G.; Shafer, B.; Strathern, J.N. Elevated Mutation Rate during Meiosis in Saccharomyces cerevisiae. PLoS Genetics 2015, 11, e1004910. [Google Scholar] [CrossRef] [PubMed]
- Xu, J. Estimating the spontaneous mutation rate of loss of sex in the human pathogenic fungus Cryptococcus neoformans. Genetics 2002, 162, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Xu, J. Genotype-Environment Interactions of Spontaneous Mutations for Vegetative Fitness in the Human Pathogenic Fungus Cryptococcus neoformans. Genetics 2004, 168, 31177–31188. [Google Scholar] [CrossRef]
- Priest, S.J.; et al. Factors enforcing the species boundary between the human pathogens Cryptococcus neoformans and Cryptococcus deneoformans. PLoS Genet 2021, 17, e1008871. [Google Scholar] [CrossRef]
- Roe, C.; et al. Dating the Cryptococcus gattii Dispersal to the North American Pacific Northwest. MSphere 2018, 3, 10.1128. [Google Scholar] [CrossRef]
- Chen, V.; et al. Evolution of haploid and diploid populations reveals common, strong, and variable pleiotropic effects in non-home environments. eLife 2023, 12, e92899. [Google Scholar] [CrossRef]
- Zeyl, C. Experimental studies of ploidy evolution in yeast. FEMS Microbiol Lett 2004, 233, 187–192. [Google Scholar] [CrossRef]
- Sharp, N.P.; Otto, S.P. Evolution: Zeroing in on the Rate of Genome Doubling. Curr Biol 2018, 28, R320–R322. [Google Scholar] [CrossRef]
- Magwene, P.M.; et al. Outcrossing, mitotic recombination, and life-history trade-offs shape genome evolution in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences USA 2011, 108, 1987–1992. [Google Scholar] [CrossRef]
- Samarasinghe, H.; You, M.; Jenkinson, T.S.; Xu, J.; James, T.Y. Hybridization Facilitates Adaptive Evolution in Two Major Fungal Pathogens. Genes 2020, 11, 101. [Google Scholar] [CrossRef]
- Zhu, Y.O.; Sherlock, G.; Petrov, D.A. Whole Genome Analysis of 132 Clinical Saccharomyces cerevisiae Strains Reveals Extensive Ploidy Variation. G3 Genes|Genomes|Genetics 2016, 6, 2421–2434. [Google Scholar] [CrossRef] [PubMed]
- Sionov, E.; Lee, H.; Chang, Y.C.; Kwon-Chung, K.J. Cryptococcus neoformans Overcomes Stress of Azole Drugs by Formation of Disomy in Specific Multiple Chromosomes. PLoS Pathogens 2010, 6, e1000848. [Google Scholar] [CrossRef] [PubMed]
- You, M.; Xu, J. What Are the Best Parents for Hybrid Progeny? An Investigation into the Human Pathogenic Fungus Cryptococcus. JoF 2021, 7, 299. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; You, M.; Xu, J. Genetic Changes in Experimental Populations of a Hybrid in the Cryptococcus neoformans Species Complex. Pathogens 2020, 9, 3. [Google Scholar] [CrossRef]
- Goddard, M.R.; Godfray, H.C.J.; Burt, A. Sex increases the efficacy of natural selection in experimental yeast populations. Nature 2005, 434, 636–640. [Google Scholar] [CrossRef]
- Lee, S.C.; Ni, M.; Li, W.; Shertz, C.; Heitman, J. The Evolution of Sex: A Perspective from the Fungal Kingdom. Microbiol Mol Biol Rev 2010, 74, 298–340. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, X.-C.; Zheng, D.-Q.; Petes, T.D. Effects of Temperature on the Meiotic Recombination Landscape of the Yeast Saccharomyces cerevisiae. mBio 2017, 8, e02099-17. [Google Scholar] [CrossRef]
- Samarasinghe, H.; Xu, J. Hybrids and hybridization in the Cryptococcus neoformans and Cryptococcus gattii species complexes. Infection, Genetics and Evolution 2018, 66, 245–255. [Google Scholar] [CrossRef]
- Li, W.; et al. Genetic Diversity and Genomic Plasticity of Cryptococcus neoformans AD Hybrid Strains. G3 Genes|Genomes|Genetics 2012, 2, 83–97. [Google Scholar] [CrossRef]
- Cogliati, M.; et al. Multi-locus sequence typing and phylogenetics of Cryptococcus neoformans AD hybrids. Fungal Genetics and Biology 2024, 170, 103861. [Google Scholar] [CrossRef]
- Viviani, M.A.; et al. Molecular analysis of 311 Cryptococcus neoformans isolates from a 30-month ECMM survey of cryptococcosis in Europe. FEMS Yeast Res 2006, 6, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Stapley, J.; Feulner, P.G.D.; Johnston, S.E.; Santure, A.W.; Smadja, C.M. Variation in recombination frequency and distribution across eukaryotes: Patterns and processes. Philos Trans R Soc Lond B Biol Sci 2017, 372, 20160455. [Google Scholar] [CrossRef] [PubMed]
- Heitman, J.; Sun, S.; James, T.Y. Evolution of fungal sexual reproduction. Mycologia 2013, 105, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Hudson, R.R.; Kaplan, N.L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 1985, 111, 147–164. [Google Scholar] [CrossRef]
- Wall, J.D. Recombination and the power of statistical tests of neutrality. Genet. Res. 1999, 74, 65–79. [Google Scholar] [CrossRef]
- Hitchcock, M.; Xu, J. Global Analyses of Multi-Locus Sequence Typing Data Reveal Geographic Differentiation, Hybridization, and Recombination in the Cryptococcus gattii Species Complex. J Fungi 2023, 9, 276. [Google Scholar] [CrossRef]
- Hitchcock, M.; Xu, J. Analyses of the Global Multilocus Genotypes of the Human Pathogenic Yeast Cryptococcus neoformans Species Complex. Genes 2022, 13, 2045. [Google Scholar] [CrossRef]
- Fischer, G.; Liti, G.; Llorente, B. The budding yeast life cycle: More complex than anticipated? Yeast 2021, 38, 5–11. [Google Scholar] [CrossRef]
- Hitchcock, M.; et al. Genomic evidence for a-α heterothallic and α-α unisexual mating and recombination in an environmental Cryptococcus deneoformans population. PLoS Genetics 2025, 21, e1011844. [Google Scholar] [CrossRef]
- Fraser, J.A.; et al. Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 2005, 437, 1360–1364. [Google Scholar] [CrossRef]
- Kidd, S.E.; et al. Cryptococcus gattii Dispersal Mechanisms, British Columbia, Canada. Emerg. Infect. Dis. 2007, 13, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Engelthaler, D.M.; et al. Cryptococcus gattii in North American Pacific Northwest: Whole-Population Genome Analysis Provides Insights into Species Evolution and Dispersal. mBio 2014, 5, e01464-14. [Google Scholar] [CrossRef]
- Billmyre, R.B.; et al. Highly Recombinant VGII Cryptococcus gattii Population Develops Clonal Outbreak Clusters through both Sexual Macroevolution and Asexual Microevolution. mBio 2014, 5, e01494-14. [Google Scholar] [CrossRef] [PubMed]
- Byrnes, E.J.; et al. Emergence and Pathogenicity of Highly Virulent Cryptococcus gattii Genotypes in the Northwest United States. PLoS Pathog 2010, 6, e1000850. [Google Scholar] [CrossRef] [PubMed]
- Sui, Y.; et al. Genome-wide mapping of spontaneous genetic alterations in diploid yeast cells. Proceedings of the National Academy of Sciences 2020, 117, 28191–28200. [Google Scholar] [CrossRef]
- Vogan, A.A.; Khankhet, J.; Xu, J. Evidence for mitotic recombination within the basidia of a hybrid cross of Cryptococcus neoformans. PLoS ONE 2013, 8, e62790. [Google Scholar] [CrossRef]
- Forche, A.; et al. Stress alters rates and types of loss of heterozygosity in Candida albicans. mBio 2011, 2, e00129-11. [Google Scholar] [CrossRef]
- Zhang, K.; Zheng, D.-Q.; Sui, Y.; Qi, L.; Petes, T.D. Genome-wide analysis of genomic alterations induced by oxidative DNA damage in yeast. Nucleic Acids Res 2019, 47, 3521–3535. [Google Scholar] [CrossRef]
- Fitzpatrick, D.A. Horizontal gene transfer in fungi. FEMS Microbiol Lett 2012, 329, 1–8. [Google Scholar] [CrossRef]
- Fisher, M.C.; et al. Tackling the emerging threat of antifungal resistance to human health. Nat Rev Microbiol 2022, 20, 557–571. [Google Scholar] [CrossRef]
- Garcia-Solache, M.A.; Casadevall, A. Global warming will bring new fungal diseases for mammals. mBio 2010, 1, e00061-10. [Google Scholar] [CrossRef]
- Casadevall, A.; Kontoyiannis, D.P.; Robert, V. On the Emergence of Candida auris: Climate Change, Azoles, Swamps, and Birds. mBio 2019, 10, e01397-19. [Google Scholar] [CrossRef]
- Xu, J. Assessing Global Fungal Threats to Humans. mLife 2022, 1, 223–240. [Google Scholar] [CrossRef]

| Species | Strain | Experimental design | Ploidy | Reported rate | Rate calculated based on | Meiosis | Growth conditions |
Source |
|---|---|---|---|---|---|---|---|---|
| S. cerevisiae | FY10 | Mutation accumulation | Haploid | 3.3 × 10−10 | nucleotide site per generation | No | YPD, 30 °C | Lynch et al. 2008[61] |
| S. cerevisiae | EAY2531 | Mutation accumulation | Diploid | 2× 10−10 - 3.8×10−10 | nucleotide site per generation | No | YPD, 30 °C | Nishant et al. 2010[62] |
| S. cerevisiae | Lab strain | Mutation accumulation | Diploid | 1.67 ×10−10 | nucleotide site per generation | No | YPD | Zhu et al. 2014[45] |
| S. cerevisiae | SEY6211 derivatives | Mutation accumulation | Haploid | 4.04 ×10−10 | nucleotide site per generation | No | YPD + 40 mg/L adenine sulfate,30 °C | Sharp et al. 2018[63] |
| S. cerevisiae | SEY6211 derivatives | Mutation accumulation | Diploid | 2.89 × 10−10 | nucleotide site per generation | No | YPD + 40 mg/L adenine sulfate,30 °C | Sharp et al. 2018[63] |
| S. cerevisiae | S288C × YJM789 | Mutation accumulation | Diploid | 7.3 × 10−9 – 2.92 x10-10 | nucleotide site per generation | No | YPD, 30 °C | Dutta et al. 2017[64] |
| S. cerevisiae | S288C × YJM789 | Mutation accumulation | Diploid | 9.8 × 10−9 | nucleotide site per generation | No | YPD, 30 °C | Pankajam et al. 2020[65] |
| S. cerevisiae | S288C x RM11-1a | Mutation accumulation | Diploid | 1.7 × 10−9 | nucleotide site per generation | No | YPD, 30 °C | Pankajam et al. 2020[65] |
| S. cerevisiae | S288C | Mutation accumulation | Diploid | 1.35 ×10−10 | nucleotide site per generation | No | YPD, 30 °C | Pankajam et al. 2020[65] |
| S. cerevisiae | RM11-1a | Mutation accumulation | Diploid | 5.4 × 10−9 | nucleotide site per generation | No | YPD, 30 °C | Pankajam et al. 2020[65] |
| S. cerevisiae | YJM789 | Mutation accumulation | Diploid | 1.16 ×10−10 | nucleotide site per generation | No | YPD, 30 °C | Pankajam et al. 2020[65] |
| S. cerevisiae | GIL104 | Fluctuation assay (URA3 & CAN1) | Haploid | 3.07 x 10-6 | a-Factor phenotypic resistance | No | Synthetic complete medium, 30 °C | Lang & Murray 2008[43] |
| S. cerevisiae | GIL104 | Fluctuation assay (URA3 & CAN1) | Haploid | 1.52 x 10-7 | 10x canavanine resistance | No | Synthetic complete medium, 30 °C | Lang & Murray 2008[43] |
| S. cerevisiae | GIL104 | Fluctuation assay (URA3 & CAN1) | Haploid | 5.43 x 10-8 | 5-FOA phenotypic resistance | No | Synthetic complete medium, 30 °C | Lang & Murray 2008[43] |
| S. cerevisiae | Natural isolates | Fluctuation assay (CAN1) | NA | 1.1 × 10−7 - 5.8 × 10−7 | Canavanine phenotypic resistance | No | Synthetic complete medium, 30 °C | Gou et al. 2019[48] |
| S. cerevisiae | YAS101, YAS106 | Fluctuation assay (CAN1) | Haploid | 9.08 × 10−7 | Canavanine phenotypic resistance | No | YPD, 30 °C | Ohnishi et al. 2004[66] |
| S. cerevisiae | YAS3001 (YAS101 x YAS106) | Fluctuation assay (CAN1) | Diploid | 1.03 × 10−4 | Canavanine phenotypic resistance | No | YPD, 30 °C | Ohnishi et al. 2004[66] |
| S. cerevisiae | GRY2691 | Fluctuation assay (CAN1) | Haploid | 2.8×10−8 | Canavanine phenotypic resistance | No | YPD, 30 °C | Rattray et al. 2015[67] |
| S. cerevisiae | GRY3262 | Fluctuation assay (CAN1) | Diploid | 37×10−8 | Canavanine phenotypic resistance | Yes | YPD, 30 °C | Rattray et al. 2015[67] |
| S. cerevisiae | Natural isolates | Fluctuation assay (CAN1) | Haploid | 2.1⨉10–7 - 2.1⨉10–6 | Canavanine phenotypic resistance | No | YPD, 30 °C | Jiang et al. 2021[35] |
| Cryptococcus spp. (C. neoformans) | Clinical isolates | Mutation accumulation | Haploid | 0.41 × 10−9 to 3,135.36 × 10−9 | Fluconazole phenotypic resistance | No | YEPD+ fluconazole, 37 °C | Xu et al. 2001[49] |
| Cryptococcus spp. (C. neoformans) | JEC50, MCC3 | Mutation accumulation | Haploid | 3.6 × 10−3 -2.32 × 10−2 | Filamentation phenotype | No | YEPD, 25 °C | Xu 2002[68] |
| Cryptococcus spp. (C. neoformans) | JEC50, MCC3 | Mutation accumulation | Diploid | 1.72 × 10−2 - 7.72 × 10−2 | Filamentation phenotype | Yes | YEPD, 25 °C | Xu 2002[68] |
| Cryptococcus spp. (C. deneoformans) | JEC21 | Mutation accumulation | Haploid | 5.662x10-3 | Vegetative growth | Yes | YEPD, 25 °C | Xu 2004[69] |
| Cryptococcus spp. (C. deneoformans) | JEC21 | Mutation accumulation | Haploid | 5.332x10-3 | Vegetative growth | Yes | YEPD, 37 °C | Xu 2004[69] |
| Cryptococcus spp. (C. deneoformans) | JEC20a | Fluctuation assay (FRR1) | Haploid | 8.59 × 10−8 | Rapamycin+FK506 phenotypic resistance | No | YPD + rapamycin+FK506, 37 °C | Priest et al. 2021[70] |
| Cryptococcus spp. (C. gattii) | 134 natural isolates | Polymorphic data | Haploid | 1.59×10−8 – 2.70×10−8 | nucleotide site per generation | NA | Bayesian evolutionary analysis by sampling trees (BEAST) | Roe et al. 2018[71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
