Submitted:
30 December 2025
Posted:
31 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Materials Characterization
2.2. Catalytic Tests
2.3. Lixiviation Tests
3. Materials and Methods
3.1. Catalysts Preparation
3.2. Physicochemical Characterization
3.3. Catalytic Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferreira, I.A.; Carreira, T.G.; Diório, A.; Bergamasco, R.; Vieira, M.F. Occurrence and Removal of Pharmaceuticals from Water Using Modified Zeolites: A Review. Desalination Water Treat. 2023, 302, 171–183. [Google Scholar] [CrossRef]
- Całus-Makowska, K.; Dziubińska, J.; Grosser, A.; Grobelak, A. Application of the Fenton and Photo-Fenton Processes in Pharmaceutical Removal: New Perspectives in Environmental Protection. Desalination Water Treat. 2025, 321, 100949. [Google Scholar] [CrossRef]
- Pacheco-Álvarez, M.; Picos Benítez, R.; Rodríguez-Narváez, O.M.; Brillas, E.; Peralta-Hernández, J.M. A Critical Review on Paracetamol Removal from Different Aqueous Matrices by Fenton and Fenton-Based Processes, and Their Combined Methods. Chemosphere 2022, 303, 134883. [Google Scholar] [CrossRef]
- Nogueira, A.F.; Pinto, G.; Correia, B.; Nunes, B. Embryonic Development, Locomotor Behavior, Biochemical, and Epigenetic Effects of the Pharmaceutical Drugs Paracetamol and Ciprofloxacin in Larvae and Embryos of Danio Rerio When Exposed to Environmental Realistic Levels of Both Drugs. Environ. Toxicol. 2019, 34, 1177–1190. [Google Scholar] [CrossRef]
- Velichkova, F.; Delmas, H.; Julcour, C.; Koumanova, B. Heterogeneous Fenton and Photo-fenton Oxidation for Paracetamol Removal Using Iron Containing ZSM-5 Zeolite as Catalyst. AIChE J. 2017, 63, 669–679. [Google Scholar] [CrossRef]
- Klavarioti, M.; Mantzavinos, D.; Kassinos, D. Removal of Residual Pharmaceuticals from Aqueous Systems by Advanced Oxidation Processes. Environ. Int. 2009, 35, 402–417. [Google Scholar] [CrossRef]
- Li, N.; He, X.; Ye, J.; Dai, H.; Peng, W.; Cheng, Z.; Yan, B.; Chen, G.; Wang, S. H2O2 Activation and Contaminants Removal in Heterogeneous Fenton-like Systems. J. Hazard. Mater. 2023, 458, 131926. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Zhou, M.; Martínez-Huitle, C.A. Heterogeneous Electro-Fenton and Photoelectro-Fenton Processes: A Critical Review of Fundamental Principles and Application for Water/Wastewater Treatment. Appl. Catal. B Environ. 2018, 235, 103–129. [Google Scholar] [CrossRef]
- Domergue, L.; Georgi, A.; Schierz, A.; Cimetière, N.; Giraudet, S.; Hauchard, D. Regeneration of the Adsorption Properties of Hydrophobic Zeolites for the Treatment of Diclofenac by Fenton-like Process: Influence of Fenton Catalyst Location. Sep. Purif. Technol. 2025, 379, 134557. [Google Scholar] [CrossRef]
- Azusano, I.P.I.; Caparanga, A.R.; Chen, B.H. Degradation of Ketoprofen Using Iron-Supported ZSM-5 Catalyst via Heterogeneous Fenton Oxidation. IOP Conf. Ser. Earth Environ. Sci. 2020, 612, 012048. [Google Scholar] [CrossRef]
- Carvalho, A.P.; Costa, J.; Martins, A.; Fonseca, A.M.; Neves, I.C.; Nunes, N. Zeolite Modification for Optimizing Fenton Reaction in Methylene Blue Dye Degradation. Colorants 2025, 4, 10. [Google Scholar] [CrossRef]
- Adityosulindro, S.; Julcour, C.; Barthe, L. Heterogeneous Fenton Oxidation Using Fe-ZSM5 Catalyst for Removal of Ibuprofen in Wastewater. J. Environ. Chem. Eng. 2018, 6, 5920–5928. [Google Scholar] [CrossRef]
- Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H.; Ge, L.Q.; Xia, M.S.; Xi, Y.Q. A Comprehensive Review on the Applications of Coal Fly Ash. Earth-Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef]
- Gollakota, A.R.K.; Volli, V.; Shu, C.M. Progressive Utilisation Prospects of Coal Fly Ash: A Review. Sci. Total Environ. 2019, 672, 951–989. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G. Methods for Characterization of Composition of Fly Ashes from Coal-Fired Power Stations: A Critical Overview. Energy Fuels 2005, 19, 1084–1098. [Google Scholar] [CrossRef]
- Anand Rao, K.; Serajuddin, M.; RamaDevi, G.; Thakurta, S.G.; Sreenivas, T. On the Characterization and Leaching of Rare Earths from a Coal Fly Ash of Indian Origin. Sep. Sci. Technol. Phila. 2020, 6395. [Google Scholar] [CrossRef]
- Taggart, R.K.; Rivera, N.A.; Levard, C.; Ambrosi, J.-P.; Borschneck, D.; Hower, J.C.; Hsu-Kim, H. Differences in Bulk and Microscale Yttrium Speciation in Coal Combustion Fly Ash. Environ. Sci. Process. Impacts 2018, 20, 1390–1403. [Google Scholar] [CrossRef]
- Feng, W.; Wan, Z.; Daniels, J.; Li, Z.; Xiao, G.; Yu, J.; Xu, D.; Guo, H.; Zhang, D.; May, E.F.; et al. Synthesis of High Quality Zeolites from Coal Fly Ash: Mobility of Hazardous Elements and Environmental Applications. J. Clean. Prod. 2018, 202, 390–400. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, T.; Lv, Y.; Jing, T.; Gao, X.; Gu, Z.; Li, S.; Ao, H.; Fang, D. Recent Progress on the Synthesis and Applications of Zeolites from Industrial Solid Wastes. Catalysts 2024, 14, 734. [Google Scholar] [CrossRef]
- Ndlovu, N.Z.N.; Ameh, A.E.; Petrik, L.F.; Ojumu, T.V. Synthesis and Characterisation of Pure Phase ZSM-5 and Sodalite Zeolites from Coal Fly Ash. Mater. Today Commun. 2023, 34, 105436. [Google Scholar] [CrossRef]
- Lee, Y.-R.; Soe, J.T.; Zhang, S.; Ahn, J.-W.; Park, M.B.; Ahn, W.-S. Synthesis of Nanoporous Materials via Recycling Coal Fly Ash and Other Solid Wastes: A Mini Review. Chem. Eng. J. 2017, 317, 821–843. [Google Scholar] [CrossRef]
- Rosa, T.; Martins, A.; Santos, M.; Trindade, T.; Nunes, N. Coal Fly Ash Waste, a Low-Cost Adsorbent for the Removal of Mordant Orange Dye from Aqueous Media. J. Braz. Chem. Soc. 2021, 00, 1–12. [Google Scholar] [CrossRef]
- Vichaphund, S.; Aht-Ong, D.; Sricharoenchaikul, V.; Atong, D. Characteristic of Fly Ash Derived-Zeolite and Its Catalytic Performance for Fast Pyrolysis of Jatropha Waste. Environ. Technol. 2014, 35, 2254–2261. [Google Scholar] [CrossRef] [PubMed]
- Mi, X.; Hou, Z.; Li, X. Controllable Synthesis of Nanoscaled ZSM-5 Aggregates with Multivariate Channel under the Synergistic Effect of Silicate-1 and TPABr Using Dual-Silica Source. Microporous Mesoporous Mater. 2021, 323, 111224. [Google Scholar] [CrossRef]
- ASTM D5758-01; Standard Test Method for Determination of Relative Crystallinity of Zeolite ZSM-5 by X-Ray Diffraction 2021. 2021.
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution ( IUPAC Technical Report ). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Gregg, S.J.; Sing, K.S.W. Adsorption, Surface Area and Porosity, 2nd ed; Academic Press: London, 1982; ISBN 0-12-300956-1. [Google Scholar]
- Kowalik, P.; Mikulski, J.; Borodziuk, A.; Duda, M.; Kamińska, I.; Zajdel, K.; Rybusinski, J.; Szczytko, J.; Wojciechowski, T.; Sobczak, K.; et al. Yttrium-Doped Iron Oxide Nanoparticles for Magnetic Hyperthermia Applications. J. Phys. Chem. C 2020, 124, 6871–6883. [Google Scholar] [CrossRef]
- Martins, A.; Silva, J.M.M.; Ribeiro, M.F.F. Influence of Rare Earth Elements on the Acid and Metal Sites of Pt / HBEA Catalyst for Short Chain n -Alkane Hydroisomerization. Appl. Catal. Gen. 2013, 466, 293–299. [Google Scholar] [CrossRef]
- Munoz, M.; De Pedro, Z.M.; Casas, J.A.; Rodriguez, J.J. Preparation of Magnetite-Based Catalysts and Their Application in Heterogeneous Fenton Oxidation – A Review. Appl. Catal. B Environ. 2015, 176–177, 249–265. [Google Scholar] [CrossRef]
- Phan, T.T.N.; Nikoloski, A.N.; Bahri, P.A.; Li, D. Adsorption and Photo-Fenton Catalytic Degradation of Organic Dyes over Crystalline LaFeO3 -Doped Porous Silica. RSC Adv. 2018, 8, 36181–36190. [Google Scholar] [CrossRef]
- Raheb, I.; Manlla, M.S. Kinetic and Thermodynamic Studies of the Degradation of Methylene Blue by Photo-Fenton Reaction. Heliyon 2021, 7, e07427. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, Y.; Guan, X.; Liu, Y.; Nie, J.; Li, C. A Rapid Fenton Treatment of Bio-Treated Dyeing and Finishing Wastewater at Second-Scale Intervals: Kinetics by Stopped-Flow Technique and Application in a Full-Scale Plant. Sci. Rep. 2019, 9, 9689. [Google Scholar] [CrossRef]
- Van, H.T.; Nguyen, L.H.; Hoang, T.K.; Nguyen, T.T.; Tran, T.N.H.; Nguyen, T.B.H.; Vu, X.H.; Pham, M.T.; Tran, T.P.; Pham, T.T.; et al. Heterogeneous Fenton Oxidation of Paracetamol in Aqueous Solution Using Iron Slag as a Catalyst: Degradation Mechanisms and Kinetics. Environ. Technol. Innov. 2020, 18, 100670. [Google Scholar] [CrossRef]
- Galhetas, M.; Mestre, A.S.; Pinto, M.L.; Gulyurtlu, I.; Lopes, H.; Carvalho, A.P. Carbon-Based Materials Prepared from Pine Gasification Residues for Acetaminophen Adsorption. Chem. Eng. J. 2014, 240, 344–351. [Google Scholar] [CrossRef]
- Nematollahi, D.; Shayani-Jam, H.; Alimoradi, M.; Niroomand, S. Electrochemical Oxidation of Acetaminophen in Aqueous Solutions: Kinetic Evaluation of Hydrolysis, Hydroxylation and Dimerization Processes. Electrochimica Acta 2009, 54, 7407–7415. [Google Scholar] [CrossRef]
- Baerlocher, Ch.; Meier, W.M.; Olson, D.H. Atlas of Zeolite Framework Types, 5th ed; Elsevier, 2001; ISBN 0-444-50701-9. [Google Scholar]
- Aleksić, M.; Kušić, H.; Koprivanac, N.; Leszczynska, D.; Božić, A.L. Heterogeneous Fenton Type Processes for the Degradation of Organic Dye Pollutant in Water — The Application of Zeolite Assisted AOPs. Desalination 2010, 257, 22–29. [Google Scholar] [CrossRef]




| Element (mmol g-1)1 | FA | FA_ZSM5_006_72 | Fe_ZSM5_C |
|---|---|---|---|
| O | 24.3 | 23.7 | 24.5 |
| C | 18.9 | 8.7 | 9.6 |
| Si | 7.7 | 20.3 | 16.2 |
| Al | 5.3 | 2.4 | 0.7 |
| Na | 0.4 | 0.6 | - |
| Fe | 0.3 | 0.4 | 0.4 |
| Y | 1.4 | 0.8 | - |
| Sample | CXRD1 (%) |
Vsuper (cm3 g-1) |
Vultra (cm3 g-1) |
Vmicro2 (cm3 g-1) |
Vmeso3 (cm3 g-1) |
Aext (m2 g-1) |
|---|---|---|---|---|---|---|
| ZSM-5_C | 100 | 0.05 | 0.10 | 0.15 | 0.07 | 35 |
| FA_ZSM5_006_24 | 78 | 0.01 | 0.07 | 0.08 | 0.05 | 34 |
| FA_ZSM5_012_24 | 79 | 0.02 | 0.08 | 0.10 | 0.05 | 35 |
| FA_ZSM5_006_72 | 78 | 0.02 | 0.08 | 0.09 | 0.06 | 35 |
| Sample | (×105 c.g.s.) |
|---|---|
| Fe/ZSM5_C | 1.4 |
| FA_ZSM5_006_24 | 5.1 |
| FA_ZSM5_012_24 | 9.2 |
| FA_ZSM5_006_72 | 2.9 |
| Sample | Pseudo-first order kinetic model | |||
|---|---|---|---|---|
| kp1 (min-1) | R2 | sFit | F | |
| Fe/ZSM5_C | 0.0014 ± 0.0002 | 0.962 | 0.395 | 76.4 |
| FA_ZSM5_006_24 | 0.0053 ± 0.0006 | 0.979 | 0.970 | 137.0 |
| FA_ZSM5_012_24 | 0.0090 ± 0.0010 | 0.978 | 1.190 | 132.5 |
| FA_ZSM5_006_72 | 0.0049 ± 0.0007 | 0.962 | 1.179 | 75.4 |
| Sample | Pseudo-second order kinetic model | |||
| kp2 (ppm-1 min-1) | R2 | sFit | F | |
| Fe/ZSM5_C | 0.000087 ± 0.00001 | 0.949 | 0.459 | 55.7 |
| FA_ZSM5_006_24 | 0.00036 ± 0.0008 | 0.944 | 1.562 | 51.0 |
| FA_ZSM5_012_24 | 0.0006 ± 0.0001 | 0.942 | 1.923 | 48.9 |
| FA_ZSM5_006_72 | 0.00033 ± 0.00008 | 0.918 | 1.728 | 33.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
