Submitted:
30 December 2025
Posted:
31 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Epidemiology: A Syndrome with High Incidence and Prevalence
3. Classification of Cardio-Renal Syndrome and phenotypes: What are we talking about.
| Nomenclature | Phenotype/Syndrome | Primary Event | Clinical Example |
|---|---|---|---|
| Acute cardio renal syndrome | Type 1 | Worsening Heart function | Acuter heart failre. Cardiogenic Shock |
| Chronic cardio renal syndrome | Type 2 | Chronic heart abnormalities | Chronic HeartFailure |
|
Acute reno cardiac syndrome |
Type 3 | Rapid worsening of kidney function | Acute kidney injury: uremia, hiperKalemia , volume overload |
| Chronic reno cardiac syndrome | Type 4 | Chronic Kidney disease | Chronic kidney disease:left ventricular hypertrophy, diastolic dysfunction |
| Secondary cardio renal syndrome | Type 5 | Acute or chronic systemic illnes | Diabetes mellitus, amyloidosis, sepsis, vasculitis, noncardiogenic shock |
3.1. Acute Cardio-Renal Syndrome (CRS1)
3.2. Chronic Cardio-Renal Syndrome (CRS2)
3.3. Acute Reno-Cardiac syndrome (CRS3)
3.4. Chronic Reno-Cardiac syndrome (CRS4)
3.5. Secondary Cardio-Renal Syndrome (CRS5):
4. Pathophisiologycal Mechanism in Cardio- Renal Syndrome: Complex and Multifactorial
4.1. Cardiac Output and Cardiac Index: Low Cardiac Output-Renal Hypoperfusion
4.2. Increase in Central Venous Pressure
4.3. Neurohormonal Dysregulation and Sympathetic Activity
4.4. Stress Oxidative and endothelial Dysfunction
4.5. Inflammatory Response
4.6. Renal failure and Anemia: The Cardio-Renal Anemia Syndrome
5. Diagnosis: Integrated Approach, Testing, and Expected Results
5.1. General Principles of Diagnosis
5.2. Clinical Assessment and Conventional Parameters
- Targeted history and physical examination: look for changes in diuretics, weight loss, use of nephrotoxic drugs, signs of congestion (jugular venous distention, peripheral edema, hepatomegaly…), and signs of hypoperfusion (oliguria, cool extremities, hypotension). The presence of systemic congestion is a strong predictor of renal deterioration and poor outcomes [41,42].
- Basic monitoring: creatinine, urea, electrolytes, hourly diuresis, fluid balance, sodium and potassium levels; ECG to rule out acute ischemia or arrhythmias [43].
5.3. Biomarkers: Interpretation and Clinical Use
- Natriuretic peptides (BNP/NT-proBNP): reflect wall stress and intracardiac congestion; very high levels correlate with a higher likelihood of congestion and risk of AKI from venous congestion [44].
- Early renal biomarkers: NGAL, KIM-1, cystatin C, and the TIMP-2·IGFBP7 dimer ([TIMP-2]·[IGFBP7] test) identify acute tubular injury or renal cellular stress before creatinine rises; in CRS they help differentiate structural injury from hemodynamic (pre-renal) changes and predict the need for renal support [45,46,47].
- Elevated NT-proBNP + signs of congestion → predominant venous component (risk of renal injury from congestion).
- Low natriuresis after diuretics + abnormal VExUS pattern → renal congestion and likely diuretic resistance.
- Positive renal biomarkers (NGAL, TIMP-2·IGFBP7) with stable creatinine → early tubular injury.
5.4. Imaging and Hemodynamic Testing: What to Look For and Its Significance
- Lung ultrasound (B-lines): number and distribution correlate with interstitial edema and lung fluid; useful for monitoring response to diuretics [50].
- Echocardiography (2D/3D + strain): evaluates systolic and diastolic function, filling pressures (E/e'), pericardial effusion, and identifies underlying cardiopathies. Reduced ejection fraction or severe diastolic dysfunction increases CRS risk [51].
- Venous Doppler and VExUS: the Venous Excess Ultrasound Score integrates IVC + portal/hepatic/renal Doppler to quantify systemic venous congestion; high scores are associated with greater AKI risk, poorer diuretic response, and rehospitalization [52].
- Intrarenal Doppler/Renal Venous Stasis Index (RVSI): pulsatile or monophasic renal venous flow indicates significant renal congestion; correlates with reduced diuresis and worse prognosis [53].
- Right-heart catheterization (invasive hemodynamics): in selected patients with complex diagnostic suspicion, it may measure filling pressures (PCWP, central venous pressure) and confirm whether systemic venous congestion is the predominant mechanism; useful for decisions regarding ultrafiltration or advanced therapy [54].
5.5. Functional Evaluation and Applied Diagnostic Algorithms
6. Complications of Cardio-Renal Syndome:Pathophysiological Mechanisms
6.1. Arrhythmias: Why They Increase in CRS
- Ionic and electrolyte disturbances: hypokalemia (diuretics), hypomagnesemia, or hyperkalemia (renal failure or RAAS inhibition) alter repolarization and predispose to both tachyarrhythmias and bradyarrhythmias; hyponatremia is also associated with poor prognosis [60].
- Myocardial ischemia and cellular injury: coronary hypoperfusion in hypotension or coexisting coronary disease can generate irritative foci and elevated troponin with arrhythmic risk [61].
- Pharmacologic effects and drug accumulation.
- Systemic inflammation and sympathetic stress [62].
6.2. Worsening Ventricular Function and Progression to Heart Failure
- Reduced output from systolic or diastolic dysfunction leads to renal hypoperfusion; lower renal perfusion worsens sodium/water retention, increasing congestion [63].
- Chronic neurohormonal activation (RAAS, aldosterone, sympathetic tone) causes vasoconstriction, fibrosis, and remodeling that perpetuate HF and renal injury [64].
- Myocardial injury from uremia and uremic toxins: in advanced CKD, accumulation of metabolites promotes myocardial dysfunction (uremic cardiomyopathy) [65].
- Inflammation and oxidative stress accelerate myocyte loss and replacement with fibrotic tissue [66].
6.3. Diuretic Resistance and Failure of Depletive Therapy
- Pharmacokinetic mechanisms: reduced renal perfusion may diminish diuretic delivery to the tubule [67].
- Shift in reabsorption site: RAAS and aldosterone activation increase distal sodium reabsorption, counteracting loop inhibition [68].
- Proximal sodium recovery and tubular adaptation (braking phenomenon) [69].
6.4. Electrolyte Disorders and Therapeutic Limitations
6.5. Thrombotic Risk and Other Systemic Complications
7. Practical Implications and How to Translate Diagnosis into Prevention of Complications
8. Prevention of Cardio-Renal Syndromes
8.1. Acute Cardio-Renal Syndrome (CRS1)
- ○
- Non-modifiable risk factors:
- ●
- History of diabetes mellitus
- •
- Previous hospitalizations for heart failure
- •
- History of acute myocardial infarction
- •
- Severe ventricular dysfunction
- •
- Baseline renal impairment
- ○
- Modifiable risk factors:
- •
- Use of high doses of diuretics
- •
- Vasodilator therapy
- •
- Drugs promoting sodium and volume retention, such as NSAIDs, thiazolidinediones, and corticosteroids
- ○
- Radiographic contrast agents.
- Comprehensive control of cardiovascular risk factors: smoking cessation, blood pressure optimization, lipid management, intensified glycemic control, and weight management.
- Avoidance of excessive or unnecessary use of radiographic contrast, and application of renal protection protocols when contrast is required. Risk factors for contrast-induced nephropathy include pre-existing CKD, diabetes, chronic heart failure, hypotension, advanced age, and high contrast volumes. Evidence supports the use of isotonic fluid administration as the most effective preventive measure, along with low-osmolar, non-ionic contrast agents such as iopamidol [83].
- Avoidance of nephrotoxic medications, or use at the minimum necessary dose and duration.
- Avoidance of sodium-retaining drugs.
- Implementation of cardiovascular therapies, pharmacological and invasive, appropriate for the underlying cardiac disease, with the aim of improving cardiac function and preventing heart failure decompensation: optimization of hemodynamic and volume status; modulators of neurohormonal and stress responses; treatment of anemia or malnutrition; cardiac resynchronization therapy or defibrillator implantation when indicated; mechanical circulatory support or transplantation in end-stage HF or end stage renal disease (ESRD); optimal renal replacement therapy; and disease-specific therapies for CVD, CKD, or HF.
- Close monitoring of renal function and electrolytes in patients with cardiac decompensation.
8.2. Chronic Cardio-Renal Syndrome (CRS 2)
8.3. Acute Reno-Cardiac Syndrome (CRS3)
- ○
- Non-modifiable risk factors:
- •
- Age >75 years
- •
- History of diabetes mellitus
- •
- Chronic heart failure
- •
- Peripheral vascular disease
- •
- Liver disease
- •
- Sepsis
- ○
- Modifiable risk factors:
- •
- Use of nephrotoxic and cardiotoxic medications
- •
- Hypotension
- •
- Electrolyte and fluid imbalances.
8.4. Chronic Reno-Cardiac Syndrome (CRS4)
8.5. Secondary Cardio-Renal Syndrome (CRS5)
9. Treatment of Cardio-Renal Syndrome
9.1. Acute Cardio-Renal Syndrome (CRS1):
9.2. Chronic Cardio- Renal Syndrome (CRS2):
9.3. Acute Reno -Cardiac Syndrome (CRS3):
9.4. Chronic Reno-Cardiac Syndrome (CRS4):
9.5. Secondary Cardio-Renal Syndrome (CRS5):
9.6. Innovative Treatments in CRS:
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflict of Interests
Abbreviations
| CRS | Cardio–renal Syndrome |
| HF | Heart Failure |
| CKD | Chronic Kidney Disease |
| ADQI | Acute Dialysis Quality Initiative |
| CV | Cardiovascular |
| AKI | Acute Kidney injury |
| ADQI | Acute Dialysis Quality Initiative |
| AHF | Acute Heart Failure |
| WRF | Worsening Renal Function |
| RIFLE | Risk Injury Failure Loss of Kidney Function and End-stage Kidney Disease |
| AKIN | Acute Kidney Injury Network |
| KDIGO | Kidney Disease: Improving Global Outcomes |
| CHF EF |
Congestive Heart Failure Ejection Fraction |
| RAAS GFR SNS ATII ACE TNF-α ILE-1 ILE-6 CRP EPO eGFR ECG GLS PCPW IVC RVSI AVP ANP BNP VExUS POCUS ESRD iSGLT2 RASi ACEi ARBs MRA aGLP-1 RRRT NSAiDs LVEF LE |
Renin-angiotensin-aldosterone-system Glomerular Filtration Rate Sympathetic Nervous System Angiotensin II Angiontensin-Converting Enzyme Tumor necrosis factor-α Interleukin-1 Interleukin-6 C- Reactive protein Erythropoietin Estimated Glomerural Filtration Rate Electrocardiogram Global longitudinal Strain Pulmonary capillary wedge pressure Inferior vena cava Renal venous stasis index Arginin-vasopresin Atrial natriuretic peptide Brain natriuretic peptide Venous Excess Ultrasound Score Point of Care Ultrasound End Stage Renal Disease SGLT 2 inhibitors Renin-angiotensin system inhibitors Angiotensin-converting Enzime inhibitors Angiotensin Receptor Blockers Mineralocorticoid receptor antagonists Glucagon –like-peptide 1 agonists Renal replacement therapy Non steroidal antiinflamatory drugs Left Ventricle Ejection Fraction |
References
- McCallum W, Sarnak MJ. Cardiorenal Syndrome in the Hospital. Clin J Am Soc Nephrol. julio de 2023;18(7):933-45.
- Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal Syndrome. J Am Coll Cardiol. 2008;52(19):1527-39.
- Gallo G, Lanza O, Savoia C. New Insight in Cardiorenal Syndrome: From Biomarkers to Therapy. Int J Mol Sci 2023;24(6):5089. [CrossRef]
- Patel KP, Katsurada K, Zheng H. Cardiorenal Syndrome: The Role of Neural Connections Between the Heart and the Kidneys. Circ Res. 2022;130(10):1601-17. [CrossRef]
- McCallum W, Testani JM. Updates in Cardiorenal Syndrome. Med Clin North Am. j 2023;107(4):763-80.
- Schefold JC, Filippatos G, Hasenfuss G, Anker SD, Von Haehling S. Heart failure and kidney dysfunction: Epidemiology, mechanisms and management. Nat Rev Nephrol. 2016;12(10):610-23. [CrossRef]
- Rangaswami J, Bhalla V, Blair JEA, Chang TI, Costa S, Lentine KL, Lerma EV, Mezue K, Molitch M, Mullens W, Ronco C, Tang WHW, McCullough PA; American Heart Association Council on the Kidney in Cardiovascular Disease and Council on Clinical Cardiology. Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment Strategies: A Scientific Statement From the American Heart Association. Circulation. 2019 Apr 16;139(16):e840-e878. PMID: 30852913. [CrossRef]
- Sheikh O, Nguyen T, Bansal S, Prasad A. Acute kidney injury in cardiogenic shock: A comprehensive review. Catheter Cardiovasc Interv. 2021 Jul 1;98(1):E91-E105. Epub 2020 Jul 29. PMID: 32725874. [CrossRef]
- Bright R. Cases and observations illustrative of renal disease accompanied by the secretion of albuminous urine. Guys Hospital Reports. 1836: 338–400.
- National Heart, Lung, and Blood Institute. NHLBI Working Group: Cardiorenal connections in heart failure and cardiovascular disease, 2004. 2004. https://www.nhlbi.nih.gov/events/2004/cardio-renal-connections-heartfailure- and-cardiovascular-disease. Accessed February 15, 2018.
- Ronco C, House AA, Haapio M. Cardiorenal syndrome: Refining the definition of a complex symbiosis gone wrong. Intensive Care Med 2008;34:957–962. [CrossRef]
- Valika AA, Costanzo MR. The acute cardiorenal syndrome type I: Considerations on physiology, epidemiology, and therapy. Curr Heart Fail Rep. 2014 Dec;11(4):382-92. PMID: 25224320. [CrossRef]
- Núñez J, Miñana G, Santas E, Bertomeu-González V. Cardiorenal Syndrome in Acute Heart Failure: Revisiting Paradigms. Rev Esp Cardiol (Engl Ed). 2015 May;68(5):426-35. Epub 2015 Mar 7. PMID: 25758162. [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO). KDIGO clinical practice guidelines for the prevention, diagnosis, evaluation, and treatment of hepatitis C in chronic kidney disease. Kidney Int Suppl. 2008;109:S1–99.
- Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG; et al. Acute Kidney Injury Network: Report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31. [CrossRef]
- Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P; Acute Dialysis Quality Initiative workgroup. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004 Aug;8(4):R204-12. [CrossRef]
- Heywood JT, Fonarow GC, Costanzo MR, Mathur VS, Wigneswaran JR, Wynne J. High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: A report from the ADHERE database. J Card Fail 2007;13:422–430. [CrossRef]
- Jois P, Mebazaa A. Cardio-renal syndrome type 2: Epidemiology, pathophysiology, and treatment. Semin Nephrol. 2012 Jan;32(1):26-30. PMID: 22365159. [CrossRef]
- De Vecchis R, Baldi C. Cardiorenal syndrome type 2: From diagnosis to optimal management. Ther Clin Risk Manag. 2014 Nov 12;10:949-61. PMID: 25419141; PMCID: PMC4235492. [CrossRef]
- Yap SC, Lee HT. Acute kidney injury and extrarenal organ dysfunction: New concepts and experimental evidence. Anesthesiology. 2012 May;116(5):1139-48. PMID: 22415388. [CrossRef]
- Kelly KJ. Distant effects of experimental renal ischemia/reperfusion injury. J Am Soc Nephrol. 2003 Jun;14(6):1549-58. PMID: 12761255. [CrossRef]
- Forman DE, Butler J, Wang Y, Abraham WT, O’Connor CM, Gottlieb SS, Loh E, Massie BM, Rich MW, Stevenson LW, Young JB, Krumholz HM. Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. J Am Coll Cardiol. 2004 Jan 7;43(1):61-7. PMID: 14715185. [CrossRef]
- Ronco C, McCullough P, Anker SD, Anand I, Aspromonte N, Bagshaw SM, Bellomo R, Berl T, Bobek I, Cruz DN, Daliento L, Davenport A, Haapio M, Hillege H, House AA, Katz N, Maisel A, Mankad S, Zanco P, Mebazaa A, Palazzuoli A, Ronco F, Shaw A, Sheinfeld G, Soni S, Vescovo G, Zamperetti N, Ponikowski P. Cardio-renal syndromes: Report from the Consensus Conference of the Acute Dialysis Quality Initiative. Eur Heart J. 2010;31:703– 711. [CrossRef]
- Clementi A, Virzi GM, Brocca A; et al. Cardiorenal syndrome type 4: Management. Blood Purif. 2013;36:200---9. [CrossRef]
- Kumar U, Wettersten N, Garimella PS. Cardiorenal Syndrome: Pathophysiology. Cardiol Clin. 2019 Aug;37(3):251-265. Epub 2019 May 21. PMID: 31279419; PMCID: PMC6658134. [CrossRef]
- Bock JS, Gottlieb SS. Cardiorenal syndrome. New perspectives. Circulation. 2010;121:2592–600.Bock JS, Gottlieb SS. Cardiorenal syndrome. New perspectives. Circulation. 2010;121:2592–600.
- Nohria A, Hasselblad V, Stebbins A, Pauly DF, Fonarow GC, Shah M, Yancy CW, Califf RM, Stevenson LW, Hill JA. Cardiorenal interactions: Insights from the ESCAPE trial. J Am Coll Cardiol. 2008;51:1268 –1274.
- F Gnanaraj J, Haehling von S, Anker SD; et al. The relevance of congestion in the cardiorrenal syndrome. Kidney Int. 2013; 83: 384-391.
- Verbrugge FH, Dupont M, Steels P; et al. Abdominal Contributions to Cardiorrenal Dysfunction in Congestive Heart Failure. J Am Coll Cardiol. 2013. [CrossRef]
- Maeder MT, Holst DP, Kaye DM. Tricuspid regurgitation contributes to renal dysfunction in patients with heart failure. J Card Fail. 2008 Dec;14(10):824-30. Epub 2008 Sep 6. PMID: 19041045. [CrossRef]
- Kawano H, Do YS, Kawano Y; et al. Angiotensin II has multiple profibrotic effects in human cardiac fibroblasts. Circulation. 2000; 101: 1130-1137. [CrossRef]
- Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev. 2000; 52: 11-34. [CrossRef]
- Ronco C, Cicoira M, McCullough PA. Cardiorenal syndrome type 1: Pathophysiological crosstalk leading to combined heart and kidney dysfunction in the setting of acutely decompensated heart failure. J Am Coll Cardiol. 2012 Sep 18;60(12):1031-42. Epub 2012 Jul 25. PMID: 22840531. [CrossRef]
- Barreto DV, Barreto FC, Liabeuf S; et al. Plasma interleukin-6 is independently associated with mortality in both hemodialysis and pre-dialysis patients with chronic kidney disease. Kidney International 2010;77(6):550–556. [PubMed: 20016471]. [CrossRef]
- Kim B-S, Jeon DS, Shin MJ; et al. Persistent Elevation of C-Reactive Protein May Predict Cardiac Hypertrophy and Dysfunction in Patients Maintained on Hemodialysis. AJN 2005;25(3):189–195. [CrossRef]
- Silverberg DS, Wexler D, Blum M, Wollman Y, Schwartz D, Sheps D, Keren G, Iaina A. The interaction between heart failure, renal failure and anemia—the cardio-renal anemia syndrome. Blood Purif. 2004;22(3):277-84. Epub 2004 May 27. PMID: 15166489. [CrossRef]
- Marques Vidas M, Portolés J, Cobo M, Gorriz JL, Nuñez J, Cases A. Anemia Management in the Cardiorenal Patient: A Nephrological Perspective. J Am Heart Assoc. 2025 Mar 4;14(5):e037363. Epub 2025 Mar 3. PMID: 40028884; PMCID: PMC12132626. [CrossRef]
- Damman K, Valente MA, Voors AA, O’Connor CM, van Veldhuisen DJ, Hillege HL. Renal impairment, worsening renal function, and outcome in patients with heart failure: An updated review. Eur Heart J. 2014. [CrossRef]
- Ronco C, Bellasi A, Di Lullo L. Cardiorenal syndrome: An updated classification. Heart Fail Clin. 2020;16(1):1–16.
- McCullough PA, Kellum JA, Ronco C. Cardiorenal syndromes: Pathophysiology and biomarkers. Nephron Clin Pract. 2010;116(2):c65–c70.
- Mullens W, Abrahams Z, Skouri HN, Francis GS, Starling RC, Tang WH. Elevated central venous pressure is associated with impaired renal function and mortality in patients with advanced heart failure. J Am Coll Cardiol. 2009;53(7):582–8.
- Miller WL. Fluid volume overload and congestion in heart failure: Time to reconsider pathophysiology and treatment. Circulation. 2020;142(19):1838–48.
- Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–726.
- Logeart D, Thabut G, Jourdain P, Chavelas C, Beyne P, Beauvais F; et al. Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. J Am Coll Cardiol. 2004;43(4):635–41. [CrossRef]
- Beaubien-Souligny W, Rola P, Haycock K, Bouchard J, Lamarche Y, Spiegel R; et al. Quantifying systemic congestion with point-of-care ultrasound: Development of the venous excess ultrasound grading system. Crit Care. 2020;24:1–10. [CrossRef]
- Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M; et al. Discovery and validation of cell cycle arrest biomarkers for acute kidney injury. Crit Care. 2013;17(1):R25. [CrossRef]
- Nijst P, Verbrugge FH, Dupont M, Steels P, Tang WH, Mullens W. The pathophysiological role of intrarenal venous flow alterations in cardio-renal syndrome type 1. Circ Heart Fail. 2015;8(4):637–48.
- Ter Maaten JM, Valente MAE, Damman K, Hillege HL, Navis G, Voors AA. Diuretic response in acute heart failure—Pathophysiology, evaluation, and therapy. Eur Heart J. 2015;36(20):1241–53. [CrossRef]
- Felker GM, Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR; et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011;364(9):797–805. [CrossRef]
- Gargani L, Pang PS, Frassi F, Miglioranza MH, Dini FL, Landi P; et al. Persistent pulmonary congestion before discharge predicts rehospitalization in heart failure: A lung ultrasound study. Eur J Heart Fail. 2015;17(7):688–95. [CrossRef]
- Melenovsky V, Borlaug BA, Rosen B, Hay I, Ferruci L, Morell CH; et al. Cardiovascular features of heart failure with preserved ejection fraction preserve systemic perfusion at the expense of renal perfusion. Circulation. 2012;126(23):2809–19.
- Rola P, Miralles-Aguiar F, Beaubien-Souligny W, Haycock K, Bouchard J, Spiegel R; et al. Clinical applications of venous excess ultrasound (VExUS): A prospective observational study. J Crit Care. 2021;61:76–82.
- Iida N, Seo Y, Sai S; et al. Clinical implications of intrarenal hemodynamic evaluation by Doppler ultrasonography in patients with heart failure. CircCardiovascImaging. 2014;7(3):416–23. [CrossRef]
- Mullens W, Verbrugge FH, Nijst P, Tang WHW. Insights from invasive hemodynamic monitoring in heart failure. Eur Heart J. 2017;38(19):1501–9.
- House A, Anand I, Bellomo R, Cruz D, Endre Z, Hillege H; et al. Definition and classification of cardiorenal syndromes: Workgroup statements from the 7th ADQI Consensus Conference. KidneyInt. 2010;76(4):456–62. [CrossRef]
- Ling LH, Kistler PM, Ellims AH, Iles LM, Lee G, Hughes GL; et al. Diffuse ventricular fibrosis in atrial fibrillation: Noninvasive evaluation and relationships with atrial remodeling. J Am Coll Cardiol. 2012;60(25):2402–8.
- Park J, Kim TH, Uhm JS, Joung B, Hwang C, Pak HN. High left atrial pressure as a predictor of atrial fibrillation occurrence after ablation. Heart Rhythm. 2014;11(6):953–9.
- de Boer RA, Pinto YM, van Veldhuisen DJ. The imbalance between fibrosis formation and degradation in heart failure. Eur J Heart Fail. 2012;14(4):404–12.
- González A, Schelbert EB, Díez J, Butler J. Myocardial interstitial fibrosis in heart failure: Biological and translational perspectives. Heart. 2018;104(10):775–81.
- Gheorghiade M, Rossi JS, Cotts W, Shin DD, Hellkamp AS, Pina IL; et al. Relation between admission serum sodium concentration and clinical outcomes in hospitalized patients with heart failure. Eur Heart J. 2007;28(8):980–6.
- Metra M, Nodari S, Parrinello G, Bordonali T, Bugatti S, Danesi R; et al. Worsening renal function in patients hospitalized for acute heart failure: Clinical implications and prognostic importance. Circ Heart Fail. 2012;5(1):54–62. [CrossRef]
- Kaye DM, Lefkovits J, Jennings GL, Bergin P, Broughton A, Esler MD. Adverse consequences of high sympathetic nervous activity in the failing human heart. Circulation. 1995;92(9):2464–71. [CrossRef]
- Verbrugge FH, Dupont M, Steels P, Franken P, Tang WHW, Mullens W. Abnormal hemodynamics in heart failure patients with preserved ejection fraction: Importance of combined forward and backward failure. J Am Coll Cardiol. 2013;62(2):200–8.
- Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction: Experimental observations and clinical implications. N Engl J Med. 1990;323(6):362–9. [CrossRef]
- London GM, Pannier B, Guerin AP, Marchais SJ, Stimpel M. Cardiac hypertrophy, aortic compliance, peripheral resistance and wave reflection in end-stage renal disease. J Am SocNephrol. 2001;12(12):2628–36.
- Tang WHW, Francis GS. The oxidative stress hypothesis of heart failure: New insights. J Am Coll Cardiol. 2012;60(22):2105–8.
- Ellison DH. Diuretic resistance: Physiology and therapeutics. N Engl J Med. 2011;364(24):2295–304.
- Luther JM, Brown NJ. The renin–angiotensin–aldosterone system and sodium handling: Physiology and therapeutic implications. Hypertension. 2011;57(3):373–9.
- Wilcox CS. Diuretics and the kidney: Braking phenomenon. Hypertension. 1991;17(5):661–9.
- Rossi J, Bayram M, Udelson JE, Lloyd-Jones D, Adams KF, O’Connor CM; et al. Improvement in hyponatremia during hospitalization for heart failure is associated with improved outcomes. Am Heart J. 2007;154(2):S46.
- Piazza G, Goldhaber SZ. Venous thromboembolism and atherothrombotic disease: Epidemiology and pathophysiology. Circulation. 2010;121(14):1521–31.
- McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA; et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl JMed. 2019;381(21):1995–2008.
- Quiroga B, Santamaría Olomo R, Gorostidi M. Síndrome Cardiorrenal. Nefrol Al Día [Internet]: https://www.nefrologiaaldia.org/555.
- Goldstein SL, Jaber BL, Faubel S, Chawla LS, Acute Kidney Injury Advisory Group of American Society of Nephrology. AKI transition of care: A potential opportunity to detect and prevent CKD. Clin J Am Soc Nephrol CJASN. 2013;8(3):476-83.
- Mehran R, Owen R, Chiarito M, Baber U, Sartori S, Cao D; et al. A contemporary simple risk score for prediction of contrast-associated acute kidney injury after percutaneous coronary intervention: Derivation and validation from an observational registry. Lancet Lond Engl. 2021;398(10315):1974-83. [CrossRef]
- Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M; et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: Development and initial validation. J Am Coll Cardiol. 2004;44(7):1393-9. [CrossRef]
- Uzendu A, Kennedy K, Chertow G, Amin AP, Giri JS, Rymer JA; et al. Contemporary Methods for Predicting Acute Kidney Injury After Coronary Intervention. JACC Cardiovasc Interv. 2023;16(18):2294-305. [CrossRef]
- Thakar CV, Arrigain S, Worley S, Yared JP, Paganini EP. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol. 2005 Jan;16(1):162-8. [CrossRef]
- Wijeysundera DN, Karkouti K, Dupuis JY, Rao V, Chan CT, Granton JT; et al. Derivation and Validation of a Simplified Predictive Index for Renal Replacement Therapy After Cardiac Surgery. JAMA. 2007;297(16):1801-9. [CrossRef]
- Lee CPT, Ng KHL, Choi GYS, Wong WT, Wong HMK, Ho KM; et al. Performance of Cleveland, Mehta, and Simplified Renal Index scores for predicting dialysis-requiring acute kidney injury after aortic vs. non-aortic cardiac surgery (2006-2023, 6160 patients). Ren Fail. 2025;47(1):2592437. [CrossRef]
- Chen Y, Gue Y, Lip GYH, Gardner DS, Devonald MAJ. Machine learning prediction of moderate-to-severe acute kidney injury after ICU admission and cardiac surgery with urine trace elements. Eur J Clin Invest. 2025;e70131. [CrossRef]
- Petrosyan Y, Mesana TG, Sun LY. Prediction of acute kidney injury risk after cardiac surgery: Using a hybrid machine learning algorithm. BMC Med Inform Decis Mak. 2022;22(1):137. [CrossRef]
- Lameire N, Kellum JA, KDIGO AKI Guideline Work Group. Contrast-induced acute kidney injury and renal support for acute kidney injury: A KDIGO summary (Part 2). Crit Care Lond Engl. 2013;17(1):205. [CrossRef]
- Chikatimalla R, Trivedi YV, Ruhela N, Singh S, Lal A, Pawa A; et al. Statins and kidney health: Exploring cardiovascular benefits, renal protection, and risks in chronic kidney disease. Postgrad Med. 2025;137(7):588-600. [CrossRef]
- Zhu R, Zheng R, Deng B, Liu P, Wang Y. Association of N-acetylcysteine use with contrast-induced nephropathy: An umbrella review of meta-analyses of randomized clinical trials. Front Med. 2023;10:1235023. [CrossRef]
- Zhao BR, Hu XR, Wang WD, Zhou Y. Cardiorenal syndrome: Clinical diagnosis, molecular mechanisms and therapeutic strategies. Acta Pharmacol Sin. 2025;46(6):1539-55. [CrossRef]
- Kellum JA, Lameire N, KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit Care Lond Engl. 2013;17(1):204. [CrossRef]
- Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179-184. [CrossRef]
- McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599-726.
- McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2023;44(37):3627-39. [CrossRef]
- Mullens W, Dauw J, Martens P, Verbrugge FH, Nijst P, Meekers E; et al. Acetazolamide in Acute Decompensated Heart Failure with Volume Overload. N Engl J Med. 2022;387(13):1185-95. [CrossRef]
- Bart BA, Boyle A, Bank AJ, Anand I, Olivari MT, Kraemer M; et al. Ultrafiltration versus usual care for hospitalized patients with heart failure: The Relief for Acutely Fluid-Overloaded Patients With Decompensated Congestive Heart Failure (RAPID-CHF) trial. J Am Coll Cardiol. 2005;46(11):2043-6.
- Costanzo MR, Guglin ME, Saltzberg MT, Jessup ML, Bart BA, Teerlink JR; et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol 2007;49(6):675-83. [CrossRef]
- Bart BA, Goldsmith SR, Lee KL, Givertz MM, O’Connor CM, Bull DA; et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med. 2012;367(24):2296-304.
- Ali MU, Mancini GBJ, Fitzpatrick-Lewis D, Connelly KA, O’Meara E, Zieroth S; et al. The effectiveness of sodium-glucose co-transporter 2 inhibitors on cardiorenal outcomes: An updated systematic review and meta-analysis. Cardiovasc Diabetol. 2024;23(1):72 . [CrossRef]
- Rai B, Dar SF, Alowami M, Sajjad RB, Agarwal T, Khan MH, Mubarak Ali SR, Kamran G, Thomas RP, Mudiyanselage NSBA, AlQudah B, Khan YA, Behary Paray N, Shahzad M, Ahmed M, Ahmed R. Finerenone and Its Cardiorenal Protective Effects: A Meta-Analysis of 21,731 Patients From Randomized Trials. Cardiol Rev. 2025 Oct 13. Epub ahead of print. PMID: 41166566. [CrossRef]
- Sasaki T, Giang SM, Wu J, Yokoo T, Gallagher M, Bellomo R, Wang AY. The effect of GLP-1 receptor agonists on renal outcomes: A systematic review and meta-analysis. Nephrol Dial Transplant. 2025 Sep 22:gfaf193. Epub ahead of print. PMID: 40982219. 98. SOLVD Investigators, Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1 de agosto de 1991;325(5):293-302. [CrossRef]
- SOLVD Investigators, Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med. 3 de septiembre de 1992;327(10):685-91.
- Cohn JN, Tognoni G, Valsartan Heart Failure Trial Investigators. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med. 6 de diciembre de 2001;345(23):1667-75.
- Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJV, Michelson EL; et al. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: The CHARM-Overall programme. Lancet Lond Engl. 6 de septiembre de 2003;362(9386):759-66. [CrossRef]
- Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJV; et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: The CHARM-Preserved Trial. Lancet Lond Engl. 6 de septiembre de 2003;362(9386):777-81. [CrossRef]
- McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR; et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 11 de septiembre de 2014;371(11):993-1004. [CrossRef]
- Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP; et al. Angiotensin-Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. N Engl J Med. 24 de octubre de 2019;381(17):1609-20.
- The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): A randomised trial. Lancet Lond Engl. 2 de enero de 1999;353(9146):9-13.
- Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet Lond Engl. 12 de junio de 1999;353(9169):2001-7.
- Packer M, Fowler MB, Roecker EB, Coats AJS, Katus HA, Krum H; et al. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: Results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation. 22 de octubre de 2002;106(17):2194-9.
- Yamamoto K, Origasa H, Hori M, J-DHF Investigators. Effects of carvedilol on heart failure with preserved ejection fraction: The Japanese Diastolic Heart Failure Study (J-DHF). Eur J Heart Fail. enero de 2013;15(1):110-8. [CrossRef]
- Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B; et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 3 de abril de 2003;348(14):1309-21. [CrossRef]
- Zannad F, McMurray JJV, Krum H, van Veldhuisen DJ, Swedberg K, Shi H; et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 6 de enero de 2011;364(1):11-21.
- Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A; et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 2 de septiembre de 1999;341(10):709-17.
- Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B; et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 10 de abril de 2014;370(15):1383-92.
- Butler J, Anstrom KJ, Felker GM, Givertz MM, Kalogeropoulos AP, Konstam MA; et al. Efficacy and Safety of Spironolactone in Acute Heart Failure: The ATHENA-HF Randomized Clinical Trial. JAMA Cardiol. 1 de septiembre de 2017;2(9):950-8.
- Agarwal R, Filippatos G, Pitt B, Anker SD, Rossing P, Joseph A; et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: The FIDELITY pooled analysis. Eur Heart J. 10 de febrero de 2022;43(6):474-84. [CrossRef]
- Solomon SD, McMurray JJV, Vaduganathan M, Claggett B, Jhund PS, Desai AS; et al. Finerenone in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N Engl J Med. 24 de octubre de 2024;391(16):1475-85. [CrossRef]
- Felker GM, Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR; et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 3 de marzo de 2011;364(9):797-805. [CrossRef]
- Trullàs JC, Morales-Rull JL, Casado J, Carrera-Izquierdo M, Sánchez-Marteles M, Conde-Martel A; et al. Combining loop with thiazide diuretics for decompensated heart failure: The CLOROTIC trial. Eur Heart J. 1 de febrero de 2023;44(5):411-21. [CrossRef]
- Konstam MA, Gheorghiade M, Burnett JC, Grinfeld L, Maggioni AP, Swedberg K; et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: The EVEREST Outcome Trial. JAMA. 28 de marzo de 2007;297(12):1319-31. [CrossRef]
- Berg DD, Patel SM, Haller PM, Cange AL, Palazzolo MG, Bellavia A; et al. Dapagliflozin in Patients Hospitalized for Heart Failure: Primary Results of the DAPA ACT HF-TIMI 68 Randomized Clinical Trial and Meta-Analysis of Sodium-Glucose Cotransporter-2 Inhibitors in Patients Hospitalized for Heart Failure. Circulation. 18 de noviembre de 2025;152(20):1411-22. [CrossRef]
- Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. 8 de octubre de 2020;383(15):1413-24. [CrossRef]
- Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med. 14 de octubre de 2021;385(16):1451-61.
- Biegus J, Voors AA, Collins SP, Kosiborod MN, Teerlink JR, Angermann CE; et al. Impact of empagliflozin on decongestion in acute heart failure: The EMPULSE trial. Eur Heart J. 1 de enero de 2023;44(1):41-50. [CrossRef]
- Kosiborod MN, Abildstrøm SZ, Borlaug BA, Butler J, Rasmussen S, Davies M; et al. Semaglutide in Patients with Heart Failure with Preserved Ejection Fraction and Obesity. N Engl J Med. 21 de septiembre de 2023;389(12):1069-84. [CrossRef]
- Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 10 de noviembre de 2016;375(19):1834-44. [CrossRef]
- Perkovic V, Tuttle KR, Rossing P, Mahaffey KW, Mann JFE, Bakris G; et al. Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes. N Engl J Med. 11 de julio de 2024;391(2):109-21. [CrossRef]
- Costanzo MR, Negoianu D, Jaski BE, Bart BA, Heywood JT, Anand IS; et al. Aquapheresis Versus Intravenous Diuretics and Hospitalizations for Heart Failure. JACC Heart Fail. febrero de 2016;4(2):95-105. [CrossRef]
- Courivaud C, Kazory A, Crépin T, Azar R, Bresson-Vautrin C, Chalopin JM; et al. Peritoneal dialysis reduces the number of hospitalization days in heart failure patients refractory to diuretics. Perit Dial Int J Int Soc Perit Dial. 2014;34(1):100-8. [CrossRef]
- Bertoli SV, Musetti C, Ciurlino D, Basile C, Galli E, Gambaro G; et al. Peritoneal ultrafiltration in refractory heart failure: A cohort study. Perit Dial Int J Int Soc Perit Dial. 2014;34(1):64-70. [CrossRef]
- Moss AJ, Hall WJ, Cannom DS, Klein H, Brown MW, Daubert JP; et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med. 1 de octubre de 2009;361(14):1329-38. [CrossRef]
- Tang ASL, Wells GA, Talajic M, Arnold MO, Sheldon R, Connolly S; et al. Cardiac-resynchronization therapy for mild-to-moderate heart failure. N Engl J Med. 16 de diciembre de 2010;363(25):2385-95. [CrossRef]
- Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R; et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 20 de enero de 2005;352(3):225-37. [CrossRef]
- Chen HH, Anstrom KJ, Givertz MM, Stevenson LW, Semigran MJ, Goldsmith SR; et al. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction: The ROSE acute heart failure randomized trial. JAMA. 18 de diciembre de 2013;310(23):2533-43.
- Packer M, Colucci W, Fisher L, Massie BM, Teerlink JR, Young J; et al. Effect of levosimendan on the short-term clinical course of patients with acutely decompensated heart failure. JACC Heart Fail. abril de 2013;1(2):103-11. [CrossRef]
- Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H; et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 17 de diciembre de 2009;361(25):2436-48. [CrossRef]
- Ponikowski P, Kirwan BA, Anker SD, McDonagh T, Dorobantu M, Drozdz J; et al. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: A multicentre, double-blind, randomised, controlled trial. Lancet Lond Engl. 12 de diciembre de 2020;396(10266):1895-904. [CrossRef]
- Swedberg K, Young JB, Anand IS, Cheng S, Desai AS, Diaz R; et al. Treatment of anemia with darbepoetin alfa in systolic heart failure. N Engl J Med. 28 de marzo de 2013;368(13):1210-9. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
