Submitted:
30 December 2025
Posted:
31 December 2025
You are already at the latest version
Abstract
Keywords:
Introduction
Why Are Synaptic Microdomains Relevant in Neurodegeneration?
Restricted Diffusion of Calcium
Liquid–Liquid Phase Separation
The Distinct Cytoskeleton of the Dendritic Spine
Synaptic Compartmentalization Is Energy Dependent
Leaky Synaptic Microdomains as the Earliest Marker of Neurodegeneration
Tau and α-Synuclein Appear Central but Might Not Be the Drivers
How This Model Explains Selective Vulnerability
Why Indulgence in Cognitive Activities Can Be Protective
Microglia, Complement, and Genetics
Predictions That Distinguish This Framework
Future Strategies
References
- Toader, C; Tataru, CP; Munteanu, O; Serban, M; Covache-Busuioc, R-A; Ciurea, AV; Enyedi, M. Decoding Neurodegeneration: A Review of Molecular Mechanisms and Therapeutic Advances in Alzheimer’s, Parkinson’s, and ALS. International Journal of Molecular Sciences 2024, 25(23), 12613. [Google Scholar] [CrossRef] [PubMed]
- Mecca, AP; Chen, MK; O'Dell, RS; Naganawa, M; Toyonaga, T; Godek, TA; Harris, JE; Bartlett, HH; Zhao, W; Nabulsi, NB; Wyk, BCV; Varma, P; Arnsten, AFT; Huang, Y; Carson, RE; van Dyck, CH. In vivo measurement of widespread synaptic loss in Alzheimer's disease with SV2A PET. Alzheimers Dement 2020, 16(7), 974–982. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meftah, S.; Gan, J. Alzheimer’s disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression. Frontiers in Synaptic Neuroscience 2023, 15, 1129036. [Google Scholar] [CrossRef]
- Selkoe, DJ. Alzheimer's disease is a synaptic failure. Science 2002, 298(5594), 789–91. [Google Scholar] [CrossRef] [PubMed]
- Glanzman, DL. Common mechanisms of synaptic plasticity in vertebrates and invertebrates. Curr Biol 2010, 20(1), R31–6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lur, G.; Higley, M. J. Glutamate receptor modulation is restricted to synaptic microdomains. Cell Reports 2015, 12(2), 326–334. [Google Scholar] [CrossRef]
- Grunditz, A; Holbro, N; Tian, L; Zuo, Y; Oertner, TG. Spine neck plasticity controls postsynaptic calcium signals through electrical compartmentalization. J Neurosci 2008, 28(50), 13457–66. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sabatini, B. L.; Oertner, T. G.; Svoboda, K. The life cycle of CA2+ ions in dendritic spines. Neuron 2002, 33(3), 439–452. [Google Scholar] [CrossRef]
- Folkmanaite, M.; Zaccolo, M. Compartmentalisation in cAMP signalling: A phase separation perspective. British Journal of Pharmacology 2025. [Google Scholar] [CrossRef]
- Langenhan, T. Modularization of adhesion G protein-coupled receptor (aGPCR) structure: How alternative splicing regulates synaptogenesis. Signal Transduction and Targeted Therapy 2024, 9, 106. [Google Scholar] [CrossRef]
- Pelucchi, S.; Stringhi, R.; Marcello, E. Dendritic spines in Alzheimer’s disease: how the actin cytoskeleton contributes to synaptic failure. Int J Mol Sci. 2020, 21(3), 908. [Google Scholar] [CrossRef] [PubMed]
- Stafford, N.; Wilson, C.; Oceandy, D.; Neyses, L.; Cartwright, E. J. The plasma membrane calcium ATPasesand their role as major new players in human disease. Physiological Reviews 2017, 97(3), 1089–1125. [Google Scholar] [CrossRef] [PubMed]
- Malci, A.; Lin, X.; Sandoval, R.; Gundelfinger, E. D.; Naumann, M.; Seidenbecher, C. I.; Herrera-Molina, R. Ca2+ signaling in postsynaptic neurons: Neuroplastin-65 regulates the interplay between plasma membrane Ca2+ ATPases and ionotropic glutamate receptors. Cell Calcium 2022, 106, 102623. [Google Scholar] [CrossRef] [PubMed]
- Davi, V.; Parutto, P.; Crapart, C.; Zhang, Y.; Konno, T.; Chambers, J.; Franklin, J. P.; Maddison, D.; Awadelkareem, M. A.; Devine, M. J.; Koslover, E.; Avezov, E. Endoplasmic reticulum geometry dictates neuronal bursting via calcium store refill rates. In bioRxiv; Cold Spring Harbor Laboratory, 2025. [Google Scholar] [CrossRef]
- Britzolaki, A.; Saurine, J.; Klocke, B.; Pitychoutis, P.M. A Role for SERCA Pumps in the Neurobiology of Neuropsychiatric and Neurodegenerative Disorders. In Calcium Signaling. Advances in Experimental Medicine and Biology; Islam, M., Ed.; Springer: Cham, 2020; vol 1131. [Google Scholar] [CrossRef]
- Hotulainen, P; Hoogenraad, CC. Actin in dendritic spines: connecting dynamics to function. J Cell Biol Epub. 2010, 189(4), 619–29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rangaraju, V; Calloway, N; Ryan, TA. Activity-driven local ATP synthesis is required for synaptic function. Cell 2014, 156(4), 825–35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bapat, O.; Purimetla, T.; Kruessel, S.; et al. VAP spatially stabilizes dendritic mitochondria to locally support synaptic plasticity. Nat Commun 2024, 15, 205. [Google Scholar] [CrossRef]
- Patel, V; Edison, P. Cardiometabolic risk factors and neurodegeneration: a review of the mechanisms underlying diabetes, obesity and hypertension in Alzheimer's disease. J Neurol Neurosurg Psychiatry 2024, 95(6), 581–589. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hernández-Vega, A.; Braun, M.; Scharrel, L.; Jahnel, M.; Wegmann, S.; Hyman, B. T.; Alberti, S.; Diez, S.; Hyman, A. A. Local Nucleation of Microtubule Bundles through Tubulin Concentration into a Condensed Tau Phase. Cell Reports 2017, 20(10), 2304–2312. [Google Scholar] [CrossRef]
- Wegmann, S; Eftekharzadeh, B; Tepper, K; Zoltowska, KM; Bennett, RE; Dujardin, S; Laskowski, PR; MacKenzie, D; Kamath, T; Commins, C; Vanderburg, C; Roe, AD; Fan, Z; Molliex, AM; Hernandez-Vega, A; Muller, D; Hyman, AA; Mandelkow, E; Taylor, JP; Hyman, BT. Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J 2018, 37(7), e98049. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mukherjee, S.; Sakunthala, A.; Gadhe, L.; Poudyal, M.; Sawner, A. S.; Kadu, P.; Maji, S. K. Liquid-liquid Phase Separation of α-Synuclein: A New Mechanistic Insight for α-Synuclein Aggregation Associated with Parkinson’s Disease Pathogenesis. Journal of Molecular Biology 2022, 435(1), 167713. [Google Scholar] [CrossRef]
- Hoffmann, C.; Sansevrino, R.; Morabito, G.; Logan, C.; Vabulas, R. M.; Ulusoy, A.; Ganzella, M.; Milovanovic, D. Synapsin condensates recruit alpha-Synuclein. Journal of Molecular Biology 2021, 433(12), 166961. [Google Scholar] [CrossRef] [PubMed]
- Espay, A. J.; Okun, M. S. Abandoning the proteinopathy paradigm in Parkinson disease. JAMA Neurology 2022, 80(2), 123. [Google Scholar] [CrossRef]
- Higley, MJ; Sabatini, BL. Calcium signaling in dendritic spines. Cold Spring Harb Perspect Biol 2012, 4(4), a005686. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grunditz, A; Holbro, N; Tian, L; Zuo, Y; Oertner, TG. Spine neck plasticity controls postsynaptic calcium signals through electrical compartmentalization. J Neurosci 2008, 28(50), 13457–66. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tønnesen, J.; Katona, G.; Rózsa, B.; et al. Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 2014, 17, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Lleó, A.; Núñez-Llaves, R.; Alcolea, D.; Chiva, C.; Balateu-Paños, D.; Colom-Cadena, M.; Gomez-Giro, G.; Muñoz, L.; Querol-Vilaseca, M.; Pegueroles, J.; Rami, L.; Lladó, A.; Molinuevo, J. L.; Tainta, M.; Clarimón, J.; Spires-Jones, T.; Blesa, R.; Fortea, J.; Martínez-Lage, P.; Belbin, O. Changes in synaptic proteins precede neurodegeneration markers in preclinical Alzheimer’s disease cerebrospinal fluid. Molecular & Cellular Proteomics 2019, 18(3), 546–560. [Google Scholar] [CrossRef]
- Ahnaou, A.; Moechars, D.; Raeymaekers, L.; et al. Emergence of early alterations in network oscillations and functional connectivity in a tau seeding mouse model of Alzheimer’s disease pathology. Sci Rep 2017, 7, 14189. [Google Scholar] [CrossRef] [PubMed]
- Landau, SM; Lee, J; Murphy, A; Ward, TJ; Harrison, TM; Baker, SL; DeCarli, C; Harvey, D; Tosun, D; Weiner, MW; Koeppe, RA; Jagust, WJ. Alzheimer's Disease Neuroimaging Initiative. Individuals with Alzheimer's disease and low tau burden: Characteristics and implications. Alzheimers Dement 2024, 20(3), 2113–2127. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sedghi, F.; Foroughi, E.; Sheikhzadeh, F.; Youshanlui, M. A.; Kohnehshahri, A. A.; Karimzadeh, O.; Sadat-Madani, S.; Ghadri, H.; Parhiz, P.; Amirbeyk, A.; Afshari, S.; Ebrahimnia, Y.; Soleimanzadeh, M.; Anar, M. A.; Borzabad, P. A.; Deravi, N. Association between educational attainment and amyloid deposition across the spectrum from normal cognition to dementia: A meta-analysis. IBRO Neuroscience Reports 2025, 19, 133–142. [Google Scholar] [CrossRef]
- Owen, JE; Veasey, SC. Impact of sleep disturbances on neurodegeneration: Insight from studies in animal models. Neurobiol Dis. 2020, 139, 104820. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, X.; Ma, Z.; Lian, P.; Xu, Y.; Cao, X. Common mechanisms underlying axonal transport deficits in neurodegenerative diseases: a mini review. Frontiers in Molecular Neuroscience 2023, 16, 1172197. [Google Scholar] [CrossRef]
- Buccellato, FR; D'Anca, M; Serpente, M; Arighi, A; Galimberti, D. The Role of Glymphatic System in Alzheimer's and Parkinson's Disease Pathogenesis. Biomedicines 2022, 10(9), 2261. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Imbimbo, BP; Balducci, C; Ippati, S; Watling, M. Initial failures of anti-tau antibodies in Alzheimer's disease are reminiscent of the amyloid-β story. Neural Regen Res. 2023, 18(1), 117–118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Espay, A. J.; Herrup, K.; Kepp, K. P.; Daly, T. The proteinopenia hypothesis: Loss of Aβ42 and the onset of Alzheimer’s Disease. Ageing Research Reviews 2023, 92, 102112. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, D.; Allen, N. E.; Kuźma, E.; Littlejohns, T. J. Metabolic syndrome and risk of incident all-cause dementia, Alzheimer’s disease and vascular dementia: a systematic review and meta-analysis of longitudinal studies. Alzheimer S Research & Therapy 2025, 17(1), 198. [Google Scholar] [CrossRef]
- Qiu, S.; Zhang, D.; Ma, L.; Li, Q.; Wang, L.; Wang, Y.; Wang, Y.; Xiong, S.; Tan, L. Associations of metabolic syndrome with risks of dementia and cognitive impairment: A systematic review and meta-analysis. Journal of Alzheimer S Disease 2025, 105(1), 15–27. [Google Scholar] [CrossRef] [PubMed]
- Kinney, JW; Bemiller, SM; Murtishaw, AS; Leisgang, AM; Salazar, AM; Lamb, BT. Inflammation as a central mechanism in Alzheimer's disease. Alzheimers Dement (N Y) 2018, 4, 575–590. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]

| What is observed | How this model explains it |
|---|---|
| Synapse loss precedes neuronal death (AD and PD) [28] | Microdomain failure is defined at synapses; neurons tolerate some synapse loss until a burden threshold is crossed |
| Early functional changes occur before overt pathology (hyperexcitability, network instability) [29] | Loss of spatial/temporal confinement causes Ca²⁺ spillover and prolonged signaling before structural loss |
| Selective neuronal vulnerability | Different neuron types have distinct microdomain architectures, energy demands, and repair capacity (different thresholds). |
| Poor correlation between protein burden and cognition [30] | Cognitive function tracks synaptic microdomain integrity and synapse count, not aggregate load |
| Education and cognitive activity delay dementia onset [31] | Structured learning strengthens compartmentalisation and raises synaptic/neuronal thresholds |
| Sleep disruption accelerates neurodegeneration [32] | Sleep is required for plasticity termination and metabolic reset; loss increases microdomain stress |
| Axonal transport deficits appear early [33] | Actin/microtubule systems required for transport are destabilized by chronic microdomain Ca²⁺ and cytoskeletal stress |
| ‘Dying-back’ pattern of degeneration | Synapses are highest-stress microdomains; failure propagates to axon and soma |
| Glial activation follows neuronal stress | Glia act as compensatory sinks and regulators |
| Complement-mediated synapse pruning | Dysfunctional synapses are tagged for destruction. |
| Glymphatic clearance is beneficial [34] | Clearance of potential toxins improves microdomain stability |
| Failure of protein-removal therapies to halt disease [35,36] | Removing aggregates does not fix upstream compartmentalisation failure |
| Neuronal collapse after prolonged stability | Nonlinear neuronal threshold reached after cumulative synaptic failure (Likely a power law dynamics) |
| Energy metabolism strongly influences disease risk [37,38] | Compartmentalisation is ATP-dependent (Ca²⁺ pumps, cytoskeleton, transport) |
| Inflammation accelerates progression [39] | Inflammation increases Ca²⁺ stress, lowering microdomain reserve |
| Functional domain | Representative targets | Spine location | Role | Conceptual therapeutic implications |
|---|---|---|---|---|
| Calcium termination | PMCA, SERCA | Spine head, spine base, presynapse | Rapid clearance and sequestration of Ca²⁺ after synaptic activity | Strengthen signal termination without suppressing induction |
| Spine neck diffusion barrier | Actin regulators (cofilin/profilin balance), septins (e.g., Sept7) | Spine neck | Control spine geometry and molecular diffusion between spine and shaft | Restore compartmental isolation at vulnerable synapses |
| Mitochondrial positioning & energy microdomains | VAP | Spine base, dendritic shaft | Anchor and regulate mitochondrial mobility near synapses | Raise neuronal threshold by stabilizing local ATP supply |
| LLPS regulation / condensate dynamics | Tau, α-synuclein (physiological state), kinases, phosphatases, chaperones (Hsp70/90) | Spine head, presynaptic terminal | Organize signaling proteins into dynamic, reversible condensates | Preserve fluid LLPS states, prevent solidification |
| Presynaptic release containment | Active zone scaffolds, Ca²⁺ buffers | Presynaptic bouton | Shape vesicle release probability and presynaptic Ca²⁺ microdomains | Reduce induction overload |
| Glial buffering (modifiers) | Astrocytic EAATs, K⁺ buffering | Perisynaptic | Limit extracellular glutamate and ionic spillover | Delay threshold crossing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
