Submitted:
29 December 2025
Posted:
30 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. New Technology for Clinical Magnetocardiography
2.1. MCG Sensors
2.1.1. Zero-Field OPM Sensors for MCG Medical Devices
2.1.2. Scalar OPM Sensors
2.1.3. Other Magnetic Sensor Technologies
2.2. Denoising
3. MCG Diagnosis of Ischemic Heart Disease
3.1. New OPM-Based MCG Systems for Diagnostic Application
3.2. Significant Statistical Heterogeneity Between Studies
3.3. Multimodal Electroanatomical Imaging of Equivalent Cardiac Current Density in Patients with IHD
4. Recommendations for MCG Standardization
4.1. Digital Recording and Postprocessing of the MCG Signal
4.1.1. MCG Recording Bandwidth and Sampling Frequency
4.1.2. The MCG Coordinate System and the Magnetic Field Colour Coding
4.1.3. Methods for the Transformation of Multichannel Magnetocardiographic Signals to Standard Format
5. Discussion
6. Conclusions
7. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| MCG | Magnetocardiography |
| SQUID | Superconducting Quantum Interference Device |
| OPM | Optical Pumped Magnetometer |
| MFD | Magnetic Field Distribution |
| ACS | Acute Coronary Syndrome |
| CAM | Current Arrow Map |
| INOCA | Ischemia with Non-Obstructive Coronary Arteries |
| ANOCA | Angina and Non-Obstructive Coronary Artery disease |
| SOC | Standards Of Care |
| SPECT | Single Photon Emission Computed Tomography |
| CAD | Coronary Artery Disease |
| CCTA | Computed tomographic angiography |
| IHD | Ischemic Heart Disease |
| CACS | Coronary artery calcium scoring |
| BSPM | Body Surface Potential Mapping |
| VCG | Vectorcardiography |
| VMD EEMD |
Variational Mode Decomposition Ensemble Empirical Mode Decomposition |
| EMD | Empirical Mode Decomposition |
| ICA | Independent Component Analysis |
| hsTn | high-sensitivity troponin |
| ED | Emergency Department |
| ROC | Receiver Operating Characteristic |
| AUC | Area Under the Curve |
| FDA | U.S. Food and Drug Administration |
| ICA | Invasive Coronary Angiography |
| CFR | Coronary Flow Reserve |
| FFR | Fractional Flow Reserve |
| PPV | Positive Predictive Value |
| NPV | Negative Predictive Value |
| PCI | Percutaneous Coronary Intervention |
| SCAD | Stable Coronary Artery Disease |
| MIG | Magnetoionography |
| CDI | Current Density Imaging |
| CDE | Current Density Estimate |
| MNE | Minimum Norm Estimate |
| PET | Positron Emission Tomography |
| SNR | Signal-To-Noise Ratio |
| UHF | Ultra-High-Frequency |
| DSE | Dobutamine Stress Echocardiography |
| LASSO | Least Absolute Shrinkage and Selection Operator |
| MNE | Minimum-Norm Estimate |
| MEG | Magnetoencephalography |
| SDA | Spatially Discordant Alternans |
| SSP | Signal Space Projection |
References
- Proceedings. Third International Workshop, Berlin(West), May 1980; Erné, S.N., Hahlbohm, H.-D., Lübbig, H., Eds.; De Gruyter: Berlin, Boston, 1981; ISBN 9783110863529. [Google Scholar]
- Williamson SJ, Romani GL, Kaufman L, Modena I, Biomagnetism An Interdisciplinary Approach. New York and London: Plenum Press, 1982.
- Romani, GL; Williamson, SJ. Fourth International Workshop on Biomagnetism. Nuovo Cim. D 1983, 2, 121–122. [Google Scholar] [CrossRef]
- Roth, B.J. The magnetocardiogram. Biophys. Rev. 2024, 87, 4326–4332. [Google Scholar] [CrossRef] [PubMed]
- Fenici, R; Brisinda, D. First 36-channel System for Clinical Magnetocardiography in Unshielded Hospital Laboratory for Cardiac Electrophysiology. Int. J. Bioelectromagn. 2003, 5, 80–83. [Google Scholar]
- Fenici, R.; Brisinda, D.; Meloni, A.M. Clinical application of magnetocardiography. Expert Rev. Mol. Diagn. 2005, 5, 291–313. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Saini, A.; Alyousef, T.; Umscheid, C.A. Magnetocardiography for the diagnosis of coronary artery disease: a systematic review and meta-analysis. Ann. Noninvasive Electrocardiol. 2012, 17, 291–298. [Google Scholar] [CrossRef]
- Camm, A.J.; Henderson, R.; Brisinda, D.; Body, R.; Charles, R.G.; Varcoe, B.; Fenici, R. Clinical utility of magnetocardiography in cardiology for the detection of myocardial ischemia. J. Electrocardiol. 2019, 57, 10–17. [Google Scholar] [CrossRef]
- Cohen, D.; Norman, J.C.; Molokhia, F.; Hood, W. Magnetocardiography of direct currents: S-T segment and baseline shifts during experimental myocardial infarction. Science 1971, 172, 1329–1333. [Google Scholar] [CrossRef]
- Wu, YW; Lee, CM; Liu, YB; Wang, SS; Huang, HC; Tseng, WK; Ju, HY; Wang, SY; Horng, HR; Herng-, RY; Yang, HC; Wu, CC. Usefulness of magnetocardiography to detect coronary artery disease and cardiac allograft vasculopathy. Circ. J. 2013, 77, 1783–1790. [Google Scholar] [CrossRef]
- Pille, M.; Gapelyuk, A.; Berg, K.; Bannasch, S.; Mockler, J.; Park, L.S.; Park, J.W.; Wessel, N. Cardiac magnetic field map topology quantified by Kullback–Leibler entropy identifies patients with clinically suspected myocarditis. Front. Cardiovasc. Med. 2023, 10, 1–10. [Google Scholar] [CrossRef]
- Suwalski, P.; Wilke, F.; Fairweather, D.; Landmesser, U.; Heidecker, B. Application of magnetocardiography for myocarditis assessment in a testosterone-substituted female-to-male individual. Am. Hear. J. plus Cardiol. Res. Pract. 2024, 43, 100412. [Google Scholar] [CrossRef]
- Sosnytskyy, V.; Chaikovsky, I.; Stadnyuk, L.; Miasnykov, G.; Kazmirchyk, A.; Sosnytska, T.; Gurjeva, O. Magnetocardiography capabilities in myocardium injuries diagnosis. World J. Cardiovasc. Dis. 2013, 03, 380–388. [Google Scholar] [CrossRef]
- Yang, S.; Yang, K.; Zhang, L.; Ren, Y.; Liu, L.; Zhang, H.; Feng, L.; Ma, Z.; Zhou, S.; He, Y.; et al. Case Report: Optical Pumped Magnetometer Magnetocardiography as a Potential Method of Therapy Monitoring in Fulminant Myocarditis. Cardiovasc. Innov. Appl. 2024, 9, 1–8. [Google Scholar] [CrossRef]
- Kandori, A.; Kanzaki, H.; Miyatake, K.; Hashimoto, S.; Itoh, S.; Tanaka, N.; Miyashita, T.; Tsukada, K. A method for detecting myocardial abnormality by using a total current-vector calculated from ST-segment deviation of a magnetocardiogram signal. Med. Biol. Eng. Comput. 2001, 39, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Mäkijärvi, M. Magnetocardiography and cardiac risk. Herzschrittmacherther. Elektrophysiol. 1997, 8, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Her, A.-Y.; Shin, E.-S.; Kim, Y.H.; Park, J.-W. Magnetocardiography detects left atrial dysfunction in patients with paroxysmal atrial fibrillation: comparison with healthy subjects. Eur. Heart J. 2018, 39, P5800. [Google Scholar] [CrossRef]
- Guida, G.; Sorbo, A.R.; Fenici, R.; Brisinda, D. Predictive value of unshielded magnetocardiographic mapping to differentiate atrial fibrillation patients from healthy subjects. Ann. noninvasive Electrocardiol. Off. J. Int. Soc. Holter Noninvasive Electrocardiology, Inc 2018, 23, e12569. [Google Scholar] [CrossRef]
- Udovychenko, Y.; Popov, A.; Chaikovsky, I. Multistage Classification of Current Density Distribution Maps of Various Heart States Based on Correlation Analysis and k-NN Algorithm. Front. Med. Technol. 2021, 3, 1–9. [Google Scholar] [CrossRef]
- Brala, D.; Thevathasan, T.; Grahl, S.; Barrow, S.; Violano, M.; Bergs, H.; Golpour, A.; Suwalski, P.; Poller, W.; Skurk, C.; et al. Application of Magnetocardiography to Screen for Inflammatory Cardiomyopathy and Monitor Treatment Response. J. Am. Heart Assoc. 2023, 12, e027619. [Google Scholar] [CrossRef]
- Heidecker, B. Rediscovery of magnetocardiography for diagnostic screening and monitoring The early days of A novel application. Eur. Heart J. 2023, 1–3. [Google Scholar]
- Golpour, A.; Suwalski, P.; Landmesser, U.; Heidecker, B. Case report: Magnetocardiography as a potential method of therapy monitoring in amyloidosis. Front. Cardiovasc. Med. 2023, 10, 1–9. [Google Scholar] [CrossRef]
- Mace, S.E.; Peacock, W.F.; Stopyra, J.; Mahler, S.A.; Pearson, C.; Pena, M.; Clark, C. Accelerated magnetocardiography in the evaluation of patients with suspected cardiac ischemia: The MAGNETO trial. Am. Hear. J. Plus Cardiol. Res. Pract. 2024, 40, 100372. [Google Scholar] [CrossRef]
- Ashokprabhu, N.; Ziada, K.; Daher, E.; Cho, L.; Schmidt, C.W.; Roca, Y.; Palmer, C.; Kaur, S.; Henry, T.D.; Pepine, C.J.; et al. Evaluation of coronary microvascular dysfunction using magnetocardiography: A new application to an old technology. Am. Hear. J. Plus Cardiol. Res. Pract. 2024, 44, 100424. [Google Scholar] [CrossRef] [PubMed]
- Pena, M.E.; Pearson, C.L.; Goulet, M.P.; Kazan, V.M.; DeRita, A.L.; Szpunar, S.M.; Dunne, R.B. A 90-second magnetocardiogram using a novel analysis system to assess for coronary artery stenosis in Emergency department observation unit chest pain patients. IJC Hear. Vasc. 2020, 26, 100466. [Google Scholar] [CrossRef] [PubMed]
- Bork, J.; Hahlbohm, H.D.; Klein, R.; Schnabel, A. The 8-layered magnetically shielded room of the PTB: Design and construction. Proc. 12th Int. Conf. Biomagn. Biomag2000, 2001; pp. 970–973. [Google Scholar]
- Yang, M.; Sun, C.; Zhao, B.; Wu, B.; Xiang, J.; Xu, M.; Teng, W.; Zhang, J.; Guo, H.; Xu, W. Magnetocardiography for the diagnosis of coronary artery disease: a systematic review and meta-analysis. 2024. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Z.; Mi, H.; Jiao, J.; Dong, W.; Yang, S.; Liu, L.; Zhou, S.; Feng, L.; Zhao, X.; et al. Diagnostic Value of Magnetocardiography to Detect Abnormal Myocardial Perfusion: A Pilot Study. Rev. Cardiovasc. Med. 2024, 25. [Google Scholar] [CrossRef]
- Yang, S.; Yang, K.; Zhang, L.; Ren, Y.; Liu, L.; Zhang, H. Case Report : Optical Pumped Magnetometer Magnetocardiography as a Potential Method of Therapy Monitoring in Fulminant Myocarditis. 2024, 9, 1–8. [Google Scholar] [CrossRef]
- Donofrio, M.T.; Moon-Grady, A.J.; Hornberger, L.K.; Copel, J.A.; Sklansky, M.S.; Abuhamad, A.; Cuneo, B.F.; Huhta, J.C.; Jonas, R.A.; Krishnan, A.; et al. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 2014, 129, 2183–2242. [Google Scholar] [CrossRef]
- Joglar, J.A.; Kapa, S.; Saarel, E. V.; Dubin, A.M.; Gorenek, B.; Hameed, A.B.; Lara de Melo, S.; Leal, M.A.; Mondésert, B.; Pacheco, L.D.; et al. 2023 HRS expert consensus statement on the management of arrhythmias during pregnancy. Hear. Rhythm 2023, 20, e175–e264. [Google Scholar] [CrossRef]
- Samples, S.; Cherny, S.; Madan, N.; Hong, J.; Mansukhani, S.A.; Strasburger, J.F.; Carr, M.R.; Patel, S.R. The Prenatal Diagnosis and Perinatal Management of Congenital Long QT Syndrome: A Comprehensive Literature Review and Recent Updates. J. Cardiovasc. Dev. Dis. 2025, 12. [Google Scholar] [CrossRef]
- Auchynnikava, V.; Semeia, L.; Sippel, K.; Sbierski-Kind, J.; Fritsche, A.; Birkenfeld, A.L.; Paluscke-Fröhlich, J.; Wikström, A.K.; Preissl, H. Fetal heart rate variability in relation to maternal physical activity and metabolic health. Early Hum. Dev. 2025, 206, 1–7. [Google Scholar] [CrossRef]
- Strasburger, J.F. Fetal magnetocardiography: Using quantum technologies to define fetal rhythm, conduction, and repolarization prior to birth. Am. Hear. J. plus Cardiol. Res. Pract. 2025, 59, 100593. [Google Scholar] [CrossRef] [PubMed]
- Brisinda, D.; Comani, S.; Meloni, A.M.; Alleva, G.; Mantini, D.; Fenici, R. Multichannel mapping of fetal magnetocardiogram in an unshielded hospital setting. Prenat. Diagn. 2005, 25. [Google Scholar] [CrossRef] [PubMed]
- Escalona-Vargas, D.; Ramirez, A.; Siegel, E.R.; Bolin, E.H.; Eswaran, H. A customized bed based stand alone array of optically pumped magnetometers for fetal magnetocardiography measurements. Sci. Rep. 2025, 15, 7236. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, G.; Engelhardt, E.; Elzenheimer, E.; Hoffman, J.; Schmidt, T.; Zaman, A.; Frey, N. A Concept for Myocardial Current Density Estimation with Magnetoelectric Sensors. Curr. Dir. Biomed. Eng. 2023, 9, 89–92. [Google Scholar] [CrossRef]
- Engelhardt, E.; Hoffmann, J.; Boueke, M.; Frey, N.; Schmidt, G. Enhancing Non-Invasive Electroanatomical Mapping with Dynamic Sensor Arrays. Proc. IEEE Sensors, 2024. [Google Scholar] [CrossRef]
- Fenici, R.; Picerni, M.; Fenici, P.; Brisinda, D. American Heart Journal Plus : Cardiology Research and Practice An advanced vision of magnetocardiography as an unrivalled method for a more comprehensive non-invasive clinical electrophysiological assessment ☆. Am. Hear. J. Plus Cardiol. Res. Pract. 2025, 52, 100514. [Google Scholar] [CrossRef]
- Her, A.-Y.; Dischl, D.; Kim, Y.H.; Kim, S.W.; Shin, E.-S. Magnetocardiography for the detection of myocardial ischemia. Front. Cardiovasc. Med. 2023, 1–10. [Google Scholar] [CrossRef]
- Yang, S.; Feng, L.; Zhang, M.; Zhang, M.; Ma, Z.; Zhang, H.; Zhang, Y.; Liu, L.; Zhou, S.; Zhao, X.; et al. Development and validation of a clinical diagnostic model for myocardial ischaemia in borderline coronary lesions based on optical pumped magnetometer magnetocardiography: a prospective observational cohort study. BMJ Open 2024, 14, e086433. [Google Scholar] [CrossRef]
- Mace, S.E.; Baugh, C.; Pena, M.E.; Takla, R. A comparison of magnetocardiography with noninvasive cardiac testing in the evaluation of patients with chest pain. Am. Hear. J. plus Cardiol. Res. Pract. 2025, 54, 100541. [Google Scholar] [CrossRef]
- Brisinda, D.; Fenici, R.; Smars, P. New Technologies for the Evaluation of Acute Coronary Syndromes: Magnetocardiography---The Next Generation of Super Electrocardiogram? In Short Stay Management of Chest Pain; Pena, M., Osborne, A., Peacock, W.F., Eds.; Springer International Publishing: Cham, 2022; pp. 177–213. ISBN 978-3-031-05520-1. [Google Scholar]
- Barbanera, S; Carell, P; Leoni, R; Romani, GL; Bordoni, F; Fenici, R; Zeppilli, P. Magnetocardiographic Study Of Some Human Cardiac Electrophysiological Phenomena: Preliminary Observations (+). In Proceedings. Third International Workshop, Berlin(West), May 1980; Erné, S.N., Hahlbohm, H.-D., Lübbig, H., Eds.; De Gruyter: Berlin, Boston, 1981; pp. 283–290. ISBN 9783110863529. [Google Scholar]
- Fenici, R.R.; Romani, G.L.; Erné, S.N. High-resolution magnetic measurements of human cardiac electrophysiological events. Nuovo Cim. D 1983, 2, 231–247. [Google Scholar] [CrossRef]
- Erné, S.N.; Fenici, R.R.; Hahlbohm, H.D.; Masselli, M.; Lehmann, H.P.; Trontelj, Z. High-resolution recordings of the PR segment in magnetocardiography. Nuovo Cim. D 1983, 2. [Google Scholar] [CrossRef]
- Fenici, RR; Masselli, M; Ernè, SN; Hahlbhom, HD. Magnetocardiographic mapping of the P-R interval phenomena in an unshielded hospital laboratory. In Proceedings of the Biomagnetism, application and theory; Pergamon Press: New York, 1985; pp. 137–141. [Google Scholar]
- Tao, R.; Zhang, S.; Zhang, R.; Shen, C.; Ma, J.; Cui, J.; Chen, Y.; Wang, B.; Li, H.; Xie, X.; et al. AI-enabled diagnosis and localization of myocardial ischemia and coronary artery stenosis from magnetocardiographic recordings. Sci. Rep. 2025, 15, 6094. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, Z.; Mi, H.; Jiao, J.; Dong, W.; Yang, S.; Liu, L.; Zhou, S.; Feng, L.; Zhao, X.; et al. Diagnostic Value of Magnetocardiography to Detect Abnormal Myocardial Perfusion: A Pilot Study. Rev. Cardiovasc. Med. 2024, 25, 379. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Pei, H.; Liang, J.; Zhou, Y.; Yang, Y.; Cui, Y. Preprocessing and Denoising Techniques for Electrocardiography and Magnetocardiography : A Review. 2024, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Rijnbeek, P.R.; Kors, J.A.; Witsenburg, M. Minimum bandwidth requirements for recording of pediatric electrocardiograms. Circulation 2001, 104, 3087–3090. [Google Scholar] [CrossRef]
- Fenici, R.; Bison, G.; Wynands, R. Comparison of magnetocardiographic mapping with SQUID-based and laser-pumped magnetometers in normal subjects. Biomed. Tech. –Band 48– 2004, 48, 192–194. [Google Scholar]
- Weis, A.; Wynands, R.; Fenici, R.; Bison, G. Dynamical MCG mapping with an atomic vapor magnetometer. Neurol. {&} Clin. Neurophysiol. NCN 2004, 2004, 38. [Google Scholar]
- Pipberger, HV; Arzbaecher, RC; Berson, AS; Briller, SA; Brody, DA; Flowers, NC; Geselowitz, DB; Lepeschkin, E; Oliver, GC; Schmitt, OH; Spach, MS. Recommendations for standardization of leads and of specifications for instruments in electrocardiography and vectorcardiography. 1975. Committee on Electrocardiography, American Heart Association. Circulation 1975, 52, 11–31. [Google Scholar]
- Bailey, J.J.; Berson, A.S.; Garson, A.J.; Horan, L.G.; Macfarlane, P.W.; Mortara, D.W.; Zywietz, C. Recommendations for standardization and specifications in automated electrocardiography: bandwidth and digital signal processing. A report for health professionals by an ad hoc writing group of the Committee on Electrocardiography and Cardiac Electrophys. Circulation 1990, 81, 730–739. [Google Scholar] [CrossRef]
- Kligfield, P.; Gettes, L.S.; Bailey, J.J.; Childers, R.; Deal, B.J.; Hancock, E.W.; van Herpen, G.; Kors, J.A.; Macfarlane, P.; Mirvis, D.M.; et al. Recommendations for the Standardization and Interpretation of the Electrocardiogram. Part I: The Electrocardiogram and Its Technology A Scientific Statement From the American Heart Association Electrocardiography and Arrhythmias Committee. Council on Clin. J. Am. Coll. Cardiol. 2007, 49, 1109–1127. [Google Scholar] [CrossRef]
- Numminen, J.; Ahlfors, S.; Ilmoniemi, R.; Montonen, J.; Nenonen, J. Transformation of multichannel magnetocardiographic signals to standard grid form. IEEE Trans. Biomed. Eng. 1995, 42, 72–78. [Google Scholar] [CrossRef]
- Burghoff, M.; Nenonen, J.; Trahms, L.; Katila, T. Conversion of magnetocardiographic recordings between two different multichannel SQUID devices. IEEE Trans. Biomed. Eng. 2000, 47, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Marhl, U.; Jodko-Władzińska, A.; Brühl, R.; Sander, T.; Jazbinšek, V. Transforming and comparing data between standard SQUID and OPM-MEG systems. PLoS One 2022, 17, e0262669. [Google Scholar] [CrossRef]
- Khan, M.A.; Sun, J.; Li, B.; Przybysz, A.; Kosel, J. Magnetic sensors-A review and recent technologies. Eng. Res. Express 2021, 3, 22005. [Google Scholar] [CrossRef]
- Murzin, D. Ultrasensitive Magnetic Field Sensors for Biomedical Applicxations. Sensors (Switzerland) 2020, 20, 1569. [Google Scholar] [CrossRef] [PubMed]
- Arekhloo, NG; Parviz, H; Zuo, S; Wang, H; Nazarpour, K; Marquetand, J; Heidari, H. Alignment of magnetic sensing and clinical magnetomyography. Front. Neurosci. 2023, 7, 1154572., 1–17. [Google Scholar] [CrossRef]
- Aslam, N.; Zhou, H.; Urbach, E.K.; Turner, M.J.; Walsworth, R.L.; Lukin, M.D.; Park, H.; Meg, O. Quantum sensors for biomedical applications. 2023, 5, 157–169. [Google Scholar] [CrossRef]
- Elfouly, T.; Alouani, A. Harnessing the Heart’s Magnetic Field for Advanced Diagnostic Techniques. Sensors 2024, 24. [Google Scholar] [CrossRef]
- Tao, R.; Zhang, S.; Zhang, R.; Shen, C.; Ma, J.; Cui, J.; Chen, Y.; Wang, B.; Li, H.; Xie, X.; et al. AI-enabled diagnosis and localization of myocardial ischemia and coronary artery stenosis from magnetocardiographic recordings. Sci. Rep. 2025, 15, 6094. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Liu, Y.; Han, C. Active magnetic compensation control systems : a review. Measurement 2026, 261, 120012. [Google Scholar] [CrossRef]
- prnewswire.com Health Canada Approves CardioFlux MCG for the Diagnosis of Myocardial Ischemia.
- Su, S.; Xu, Z.; He, X.; Zhang, G.; Wu, H.; Gao, Y.; Ma, Y.; Yin, C.; Ruan, Y.; Li, K.; et al. Vector magnetocardiography using compact optically-pumped magnetometers. Heliyon 2024, 10, e29092. [Google Scholar] [CrossRef]
- Su, S.; Xu, Z.; He, X.; Yin, C.; Kong, M.; Zhang, X.; Ruan, Y.; Li, K. An Integrated Single-Beam Three-Axis High-Sensitivity Magnetometer. Sensors 2023, 23, 3148. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Yu, W.; Gao, Y.; Wang, F.; Zhang, Q.; Lin, Q. Dual-resonance single-beam triaxial spin-exchange relaxation-free magnetometer. Opt. Express 2025, 33, 37343–37351. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Zhu, Y.; He, J.; Qi, J.; Jia, Y.; Wang, A.; Zhao, T.; Wei, C.; Jiao, H.; Feng, L.; et al. Optical pump magnetometers parametric correction method based on three-axis coil arrays. Measurement 2025, 242, 115909. [Google Scholar] [CrossRef]
- Sheng, D.; Perry, A.R.; Krzyzewski, S.P.; Geller, S.; Kitching, J.; Knappe, S. A microfabricated optically-pumped magnetic gradiometer. Appl. Phys. Lett. 2017, 110. [Google Scholar] [CrossRef]
- Fenici, R.; Mashkar, R.; Brisinda, D. Performance of miniature scalar atomic magnetometers for magnetocardiography in an unshielded hospital laboratory for clinical electrophysiology. Eur. Heart J. 2020, 41, 3. [Google Scholar] [CrossRef]
- Brisinda, D.; Fenici, P.; Fenici, R. Clinical magnetocardiography: the unshielded bet—past, present, and future. Front. Cardiovasc. Med. 2023, 10, 1–24. [Google Scholar] [CrossRef]
- Iwata, G.Z.; Nguyen, C.T.; Tharratt, K.; Ruf, M.; Reinhardt, T.; Crivelli-Decker, J.; Liddy, M.S.Z.; Rugar, A.E.; Lu, F.; Aschbacher, K.; et al. Bedside Magnetocardiography with a Scalar Sensor Array. Sensors 2024, 24, 5402. [Google Scholar] [CrossRef]
- Zhang, R.; Mhaskar, R.; Smith, K.; Prouty, M. Portable intrinsic gradiometer for ultra-sensitive detection of magnetic gradient in unshielded environment. Appl. Phys. Lett. 2020, 116, 143501 1–4. [Google Scholar] [CrossRef]
- Limes, M.E.; Foley, E.L.; Kornack, T.W.; Caliga, S.; McBride, S.; Braun, A.; Lee, W.; Lucivero, V.G.; Romalis, M. V. Portable Magnetometry for Detection of Biomagnetism in Ambient Environments. Phys. Rev. Appl. 2020, 14, 011002-1–6. [Google Scholar] [CrossRef]
- Zhang, R.; Xiao, W.; Ding, Y.; Feng, Y.; Peng, X.; Shen, L.; Sun, C.; Wu, T.; Wu, Y.; Yang, Y.; et al. Recording brain activities in unshielded Earth’s field with optically pumped atomic magnetometers. Sci. Adv. 2020, 6, 1–9. [Google Scholar] [CrossRef]
- Perry, A.R.; Bulatowicz, M.D.; Larsen, M.; Walker, T.G.; Wyllie, R. All-optical intrinsic atomic gradiometer with sub-20 fT/cm/√Hz sensitivity in a 22 µT earth-scale magnetic field. Opt. Express 2020, 28, 36696. [Google Scholar] [CrossRef] [PubMed]
- Clancy, R.J.; Gerginov, V.; Alem, O.; Becker, S.; Knappe, S. A study of scalar optically-pumped magnetometers for use in magnetoencephalography without shielding. Phys. Med. Biol. 2021, 66, 175030. [Google Scholar] [CrossRef] [PubMed]
- Petrenko, M; Vershovskii, A. Towards a Practical Implementation of a Single-Beam All-Optical Non-Zero-Field Magnetic Sensor for. Sensors (Basel). 2022, 22, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Sun, C.; Shen, L.; Feng, Y.; Liu, M.; Wu, Y.; Liu, X.; Wu, T.; Peng, X.; Guo, H. A movable unshielded magnetocardiography system. Sci. Adv. 2023, 9, eadg1746. [Google Scholar] [CrossRef]
- Cook, H.; Bezsudnova, Y.; Koponen, L.M.; Jensen, O.; Barontini, G. An optically pumped magnetic gradiometer for the detection of human biomagnetism. Quantum Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Yuan, Z.; Lin, S. Gradient phase and amplitude errors in atomic magnetic gradiometers for biomagnetic imaging systems. ISCIENCE 2024, 27, 109250. [Google Scholar] [CrossRef]
- Lachlan, T.; He, H.; Miller, A.; Chandan, N.; Siddiqui, S.; Beadle, R.; Wilson, D.; Petkar, S.; Randeva, H.; Osman, F. Feasibility of novel unshielded portable magnetocardiography: Insights from the prospective multicenter MAGNETO-SCD trial. Hear. Rhythm 2023, 20, 475–477. [Google Scholar] [CrossRef]
- Kaiss, A.; Yang, J. Toward Wearable MagnetoCardioGraphy ( MCG ) for Cognitive Workload Monitoring : Advancements in Sensor and Study Design. Sensors 2025, 25, 1–20. [Google Scholar] [CrossRef]
- Kurashima, K.; Kataoka, M.; Nakano, T.; Fujiwara, K.; Kato, S.; Nakamura, T.; Yuzawa, M.; Masuda, M.; Ichimura, K.; Okatake, S.; et al. Development of Magnetocardiograph without Magnetically Shielded Room Using High-Detectivity TMR Sensors. Sensors 2023, 23. [Google Scholar] [CrossRef]
- Yaga, L.; Amemiya, M.; Natsume, Y.; Shibuya, T.; Sasano, T. Recording of Cardiac Excitation Using a Novel Magnetocardiography System with Magnetoresistive Sensors Outside a Magnetic Shielded Room. Sensors 2025, 25, 4642. [Google Scholar] [CrossRef]
- Barry, J.F.; Turner, M.J.; Schloss, J.M.; Glenn, D.R.; Song, Y.; Lukin, M.D.; Park, H.; Walsworth, R.L. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl. Acad. Sci. 2016, 201601513. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, J.; Widmann, M.; Benke, M.; Kübler, M.; Dasari, D.; Klotz, T.; Gizzi, L.; Röhrle, O.; Brenner, P.; et al. Optimizing NV magnetometry for Magnetoneurography and Magnetomyography applications. Front. Neurosci. 2023, 16. [Google Scholar] [CrossRef] [PubMed]
- Arai, Keigo; Kuwahata, Akihiro; Nishitani, Daisuke. Millimetre-scale magnetocardiography of living rats using a solid-state quantum sensor Keigo 1–17.
- Hansen, N.W.; Webb, J.L.; Troise, L.; Olsson, C.; Tomasevic, L.; Brinza, O.; Achard, J.; Staacke, R.; Kieschnick, M.; Meijer, J.; et al. Microscopic-scale magnetic recording of brain neuronal electrical activity using a diamond quantum sensor. Sci. Rep. 2023, 13, 12407. [Google Scholar] [CrossRef]
- Dang-Ting, Liu; Ye, Tian; Yu-Feng, Ren; Hong-Wei, Yu; Li-Hua, Zhang; Qian-Sheng, Yang; Geng-Hua, Chen. A Novel Filter Scheme of Data Processing for SQUID-Based Magnetocardiogram. Chinese Phys. Lett. 2008, 25, 2714. [Google Scholar] [CrossRef]
- Comani, S.; Mantini, D.; Alleva, G.; Di Luzio, S.; Romani, G.L. Optimal filter design for shielded and unshielded ambient noise reduction in fetal magnetocardiography. Phys. Med. Biol. 2005, 50, 5509–5521. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Xiang, M.; Qu, C.; Jia, Y.; Yang, J.; Tian, K.; Cao, Y.; Pang, J.; Li, J. Multi-Channel Non-Local Means Algorithm Based on Hermite Approximation for Denoising Two-Dimensional Magnetocardiography. IEEE J. Biomed. Heal. informatics 2025, PP. [Google Scholar] [CrossRef]
- Alexander A. Bakharev High Balance Gradiometer 2003, 1, 1–7. 1, 1–7.
- Mensah-brown, N.A.; Lutter, W.J.; Comani, S.; Strasburger, J.F.; Wakai, R.T. Independent component analysis of normal and abnormal rhythm in twin pregnancies. In Physiol Meas; Independent, 2011; Volume 32, pp. 51–64. [Google Scholar] [CrossRef]
- Tiporlini, V.; Alameh, K. Optical Magnetometer Employing Adaptive Noise Cancellation for Unshielded Magnetocardiography. Univers. J. Biomed. Eng. 2013, 1, 16–21. [Google Scholar] [CrossRef]
- Pyragius, T.; Jensen, K. A high performance active noise control system for magnetic fields. Rev. Sci. Instrum. 2021, 92, 1–8. [Google Scholar] [CrossRef]
- Liang, S.; Qi, J.; He, J.; Jia, Y.; Wang, A.; Zhao, T.; Wei, C.; Jiao, H.; Feng, L.; Cheng, H. A Novel Adaptive Independent Component Analysis Method for Multi-Channel Optically Pumped Magnetometers’ Magnetocardiography Signals. Biosensors 2025, 15. [Google Scholar] [CrossRef]
- Erne, S.N.; Fenici, R.R.; Hahlbohm, H.D. High resolution magnetocardiography: Recording of His-Purkinje activity in man. Jpn. Heart J. 1982, 23. [Google Scholar]
- Senthilnathan, S.; Chandrasekaran, P.; Narayanan, M.; Patel, R.; Katholil, G.; Janawadkar, M.P.; Thimmakudy, R.S.; Thoddi, M.R. Enhancing the reliability in the noninvasive measurement of the his bundle magnetic field using a novel signal averaging methodology. Ann. Noninvasive Electrocardiol. 2012, 17, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; He, C.; Guo, Q. Denoising of magnetocardiography based on improved variational mode decomposition and interval thresholding method. Symmetry (Basel). 2018, 10. [Google Scholar] [CrossRef]
- Chen, M.; Cheng, Q.; Feng, X.; Zhao, K.; Zhou, Y.; Xing, B.; Tang, S.; Wang, R.; Duan, J.; Wang, J.; et al. Optimized variational mode decomposition algorithm based on adaptive thresholding method and improved whale optimization algorithm for denoising magnetocardiography signal. Biomed. Signal Process. Control 2024, 88, 105681. [Google Scholar] [CrossRef]
- Mariyappa, N.; Sengottuvel, S.; Patel, Rajesh; Parasakthi, C.; Gireesan, K.; Janawadkar, M.P.; Radhakrishnan, T.S.; Sundar, C.S. Denoising of multichannel MCG data by the combination of EEMD and ICA and its effect on the pseudo current density maps. Biomed. Signal Process. Control 2015, 18, 204–213. [Google Scholar] [CrossRef]
- Xing, B.; Feng, X.; Zhang, B. Research on Denoising Methods for Magnetocardiography Signals in a Non-Magnetic Shielding Environment; 2025; pp. 1–22. [Google Scholar]
- Kesavaraja, C.; Sengottuvel, S.; Patel, R.; Mani, A. Machine Learning-Based Automated Method for Effective De-noising of Magnetocardiography Signals Using Independent Component Analysis. Circuits, Syst. Signal Process. 2024, 43, 4968–4990. [Google Scholar] [CrossRef]
- Wu, T.; Zhao, X.; Feng, L.; Yang, S.; Xing, H.; Ma, Z.; Yang, X.; Zhang, M.; Ding, M.; He, Y.; et al. Comparison of magnetocardiography and coronary computed tomographic angiography for detection of coronary artery stenosis and the influence of calcium. Eur. Radiol. 2025. [Google Scholar] [CrossRef]
- Park, JW; Dischl, D.; Aschbacher, K.; Kranz, D.; Brachmann, J.; Treskatsch, S.; Heidecker, B.; Landmesser, U.; Wessel, N. Editorial: Current proceedings in magnetocardiology — past, present, future. In Frontiers; 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Kontos, M.C.; de Lemos, J.A.; Deitelzweig, S.B.; Diercks, D.B.; Gore, M.O.; Hess, E.P.; McCarthy, C.P.; McCord, J.K.; Musey, P.I.J.; Villines, T.C.; et al. 2022 ACC Expert Consensus Decision Pathway on the Evaluation and Disposition of Acute Chest Pain in the Emergency Department: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2022, 80, 1925–1960. [Google Scholar] [CrossRef]
- Pena, M.E.; Pearson, C.L.; Goulet, M.P.; Kazan, V.M.; DeRita, A.L.; Szpunar, S.M.; Dunne, R.B. A 90-second magnetocardiogram using a novel analysis system to assess for coronary artery stenosis in Emergency department observation unit chest pain patients. IJC Hear. Vasc. 2020, 26, 1–7. [Google Scholar] [CrossRef]
- Baugh, C.W.; Pena, M.E.; Takla, R.B.; Hadri, A.O.; Mace, S.E. National cost savings, operational and safety benefits from use of magnetocardiography in the assessment of emergency department chest pain patients. Am. Hear. J. Plus Cardiol. Res. Pract. 2024, 45, 100434. [Google Scholar] [CrossRef]
- Mace, S.E.; Pena, M.; Ahee, D.J.; Takla, R. American Heart Journal Plus : Cardiology Research and Practice Utility of rest magnetocardiography in patients presenting to the emergency department with chest pain : A case series on the CardioFlux MCG. Am. Hear. J. Plus Cardiol. Res. Pract. 2024, 45, 100441. [Google Scholar] [CrossRef] [PubMed]
- News, C. FDA grants breakthrough device status to CardioFlux. https://www.auntminnie.com/clinical-news/mri/article/15627479/fda-grants-breakthrough-device-status-to-cardioflux 3–5.
- Coriasso, N.; Daher, E. Utility of magnetocardiography (MCG) in the assessment of obstructive coronary artery disease before and after percutaneous coronary intervention: A case series. Am. Hear. J. Plus Cardiol. Res. Pract. 2024, 45, 100425. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Pang, J.; Xu, D.; Wang, R.; Xie, F.; Yang, Y.; Sun, J.; Li, Y.; Li, R.; Yin, X.; et al. Magnetocardiography-based coronary artery disease severity assessment and localization using spatiotemporal features. Physiol. Meas. 2023, 44. [Google Scholar] [CrossRef]
- Cui, J.-G.; Tian, F.; Miao, Y.-H.; Jin, Q.-H.; Shi, Y.-J.; Li, L.; Shen, M.-J.; Xie, X.-M.; Zhang, S.-L.; Chen, Y.-D. Accurate diagnosis of severe coronary stenosis based on resting magnetocardiography: a prospective, single-center, cross-sectional analysis. J. Geriatr. Cardiol. 2024, 21, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Pan, Y.; Gao, H.; Jin, Y.; Feng, L.; Ma, Z.; Zhang, H.; Yang, S.; Wu, T.; Zhang, M.; et al. Predictive Accuracy of Magnetocardiography for Diagnosing Myocardial Ischemia in NSTE-ACS Patients With Residual Post-PCI Angina. JACC Adv. 2025, 4, 102073. [Google Scholar] [CrossRef]
- Tu, C.; Yang, S.; Wang, Z.; Liu, L.; Ma, Z.; Zhang, H.; Feng, L.; Cai, B.; Zhang, H.; Ding, M.; et al. Machine learning in diagnosing coronary artery disease via optical pumped magnetometer magnetocardiography: a prospective cohort study. Physiol. Meas. 2025, 46. [Google Scholar] [CrossRef]
- Ma, Z.; Xu, F.; Yang, S.; Zhang, H.; Liu, L.; Zhou, S.; Feng, L.; Tu, C.; Song, X.; Zhang, H. Magnetocardiography’s role in a recurrent angina patient following percutaneous coronary intervention – Case report. J. Electrocardiol. 2025, 92, 154085. [Google Scholar] [CrossRef]
- Park, J.-W.; Shin, E.-S.; Ann, S.H.; Gödde, M.; Park, L.S.-I.; Brachmann, J.; Vidal-Lopez, S.; Wierzbinski, J.; Lam, Y.-Y.; Jung, F. Validation of magnetocardiography versus fractional flow reserve for detection of coronary artery disease. Clin. Hemorheol. Microcirc. 2015, 59, 267–281. [Google Scholar] [CrossRef]
- Feng, L.; Zhao, X.; Yang, S.; Liu, L.; Ma, Z.; Zhang, H.; Xiang, J.; Ding, M.; Tu, C.; Song, X.; et al. Clinical utility of the exercise optically pumped magnetocardiographic stress test in young adults: an exploratory study. Am. Hear. J. Plus Cardiol. Res. Pract. 2025, 60, 100661. [Google Scholar] [CrossRef]
- Brisinda, D.; Meloni, A.M.; Fenici, R. Clinical multichannel MCG in unshielded hospital environment. Neurol. Clin. Neurophysiol. 2004, 8, 1–8. [Google Scholar]
- He, W.F.; Zeng, L.H.; Xie, N.S.; Liu, H.X.; Cui, W.M.; Wang, Y.; Zhang, Z.J.; Ye, G.L.; Qin, Z.Y.; Guo, Z.Q.; et al. Effectiveness of magnetocardiography as a non-invasive tool for functional assessment of myocardial ischemia in patients with stable coronary artery disease. Front. Med. Technol. 2025, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tolstrup, K.; Akhtari, M.; Brisinda, D.; Meloni, A.M.; Siegel, R.J.; Fenici, R. Accurate diagnosis of ischemic heart disease without exposure to radiation using non-stress unshielded magnetocardiography. Am. Hear. J. Plus Cardiol. Res. Pract. 2025, 49, 100483. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.; Sularz, A.; Adi, M.Z.; Al-abcha, A.; Matin, A.; Bakharev, A.; Vanmeter, D.; Alkhouli, M.; Hevesi, S. Magnetocardiography in Diagnosis of Stress-Induced Cardiomyopathy. JACC case reporta 2025, 30. [Google Scholar] [CrossRef] [PubMed]
- Dischl, D.; Kranz, D.D.; Bannasch, S.; Gapelyuk, A.; Landmesser, U.; Park, J.W.; Wessel, N. Magnetoionography enhances diagnostic accuracy of magnetocardiography in coronary artery disease. Sci. Rep. 2025, 15, 1–11. [Google Scholar] [CrossRef]
- Han, X.; Pang, J.; Xu, D.; Xie, F.; Li, Y.; Xiang, M.; Sun, J.; Chen, Y.; Ning, X. Coronary artery disease severity and location detection using deep-mining-based magnetocardiography pattern features. Comput. Methods Programs Biomed. 2025, 266, 108764. [Google Scholar] [CrossRef]
- BAKHAREV, Alexander, A. ISCHEMIA IDENTIFICATION, QUANTIFICATION AND PARTIAL LOCALIZATION IN MCG - EP 1 349 494 B1 2011, Bulletin 2, 1–20.
- Hailer, B.; Chaikovsky, I.; Auth-Eisernitz, S.; Schäfer, H.; Steinberg, F.; Grönemeyer, D.H.W. Magnetocardiography in coronary artery disease with a new system in an unshielded setting. Clin. Cardiol. 2003, 26, 465–471. [Google Scholar] [CrossRef]
- Hänninen, H.; Takala, P.; Mäkijärvi, M.; Korhonen, P.; Oikarinen, L.; Simelius, K.; Nenonen, J.; Katila, T.; Toivonen, L. ST-segment level and slope in exercise-induced myocardial ischemia evaluated with body surface potential mapping. Am. J. Cardiol. 2001, 88, 1152–1156. [Google Scholar] [CrossRef]
- Park, J.-W.; Hill, P.M.; Chung, N.; Hugenholtz, P.G.; Jung, F. Magnetocardiography predicts coronary artery disease in patients with acute chest pain. Ann. Noninvasive Electrocardiol. 2005, 10, 312–323. [Google Scholar] [CrossRef]
- Chaikovsky, Y; Kazmirchyk, A; Sofienko, S; Liu, YB; Zhou, Y; Feng, X; Xu, L; Huang, Y.-F. Unshielded Magnetocardiography in Clinical Practice: Detection of Myocardial Damage in CAD Patients and in Patients Recovered from COVID-19. In IntechOpen; Mokhena, T., Mochane, M., Tshwafo, M., Linganiso, L., Thekisoe, O., Songca, S., Eds.; 2022. [Google Scholar]
- Hämäläinen, M.S.; Ilmoniemi, R.J. Interpreting magnetic fields of the brain: minimum norm estimates. Med. Biol. Eng. Comput. 1994, 32, 35–42. [Google Scholar] [CrossRef]
- Pesola, K.; Nenonen, J.; Fenici, R.; Lötjönen, J.; Mäkijärvi, M.; Fenici, P.; Korhonen, P.; Lauerma, K.; Valkonen, M.; Toivonen, L.; et al. Bioelectromagnetic localization of a pacing catheter in the heart. Phys. Med. Biol. 1999, 44, 2565–2578. [Google Scholar] [CrossRef]
- Pesola, K; Nenonen, J; Fenici, R; Katila, T. Comparison of regularization methods when applied to epicardial minimum norm estimates. Biomed. Tech 1997, 42, 273–276. [Google Scholar]
- Nenonen, J.; Pesola, K.; Lötjönen, J.; Lauerma, K.; Hänninen, H.; Korhonen, P.; Mäkijärvi, M.; Fenici, R.; Katila, T. Cardiomagnetic Source Imaging Studies with Focal and Distributed Source Models. Biomed. Tech. 1999, 44. [Google Scholar] [CrossRef]
- Fenici, R; Brisinda, D; Pesola, K; Nenonen, J; Fenici, P; Katila, T. Validation of magnetocardiographic current density imaging with a non-magnetic stimulation catheter. In Proceedings of the Proceedings of the 12th International Conference on Biomagnetism, 2001; pp. 839–842. [Google Scholar]
- Killmann, R.; Jaros, G.G.; Wach, P.; Graumann, R.; Moshage, W.; Renhardt, M.; Fleischmann, P.H. Localisation of myocardial ischaemia from the magnetocardiogram using current density reconstruction method: computer simulation study. Med. Biol. Eng. Comput. 1995, 33, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Pesola, K.; Nenonen, J. Current density imaging on the epicardial surface of the heart. In Proceedings of the Geology; 2000; pp. 0–3.
- Nenonen, J.; Pesola, K.; Hänninen, H.; Lauerma, K.; Takala, P.; Mäkelä, T.; Mäkijärvi, M.; Knuuti, J.; Toivonen, L.; Katila, T. Current-density estimation of exercise-induced ischemia in patients with multivessel coronary artery disease. J. Electrocardiol. 2001, 34 Suppl, 37–42. [Google Scholar] [CrossRef]
- Nakai, K.; Izumoto, H.; Kawazoe, K.; Tsuboi, J.; Fukuhiro, Y.; Oka, T.; Yoshioka, K.; Shozushima, M.; Itoh, M.; Suwabe, A.; et al. Three-dimensional recovery time dispersion map by 64-channel magnetocardiography may demonstrate the location of a myocardial injury and heterogeneity of repolarization. Int. J. Cardiovasc. Imaging 2006, 22, 573–580. [Google Scholar] [CrossRef]
- Sosnytskyy, V.N.; Stadnyuk, L.A.; Sosnytska, T. V; Kozhukhov, S.N.; Miasnikov, G. V Value of current density dispersion alternans assessed by magnetocardiography mapping in patients with ischemic heart disease and ventricular arrhythmias. Eur. Heart J. 2017, 38, P5502. [Google Scholar] [CrossRef]
- Goernig, M.; Haueisen, J.; Schreiber, J.; Leder, U.; Hänninen, H.; Mäkelä, T.; Takala, P.; Nenonen, J.; Lauerma, K.; Knuuti, J.; et al. Comparison of current density viability imaging at rest with FDG-PET in patients after myocardial infarction. Comput. Med. Imaging Graph. 2009, 33, 1–6. [Google Scholar] [CrossRef]
- Dössel, O. Inverse problem of electro- and magnetocardiography: review and recent progress. Int. J. Bioelectromagn. 2000, 2, 262–285. [Google Scholar]
- Farrell, D.E.; Tripp, J.H.; VanDoren, C.L. High Resolution Cardiomagnetism. In Proceedings. Third International Workshop, Berlin(West), May 1980; Erné, S.N., Hahlbohm, H.-D., Lübbig, H., Eds.; De Gruyter: Berlin, Boston, 1981; pp. 273–282. ISBN 9783110863529. [Google Scholar]
- Erné, S.N.; Fenici, R.R.; Hahlbohm, H.-D.; Jaszczuk, W.; Lehmann, H.P.; Masselli, M. High-resolution magnetocardiographic recordings of the ST segment in patients with electrical late potentials. Nuovo Cim. D 1983, 2, 340–345. [Google Scholar] [CrossRef]
- Campbell, B; Richley, D; Ross, C; Eggett, CJ. Clinical Guidelines by Consensus Recording a Standard 12-Lead Electrocardiogram An approved method by the The Professional Body for Cardiac Scientists (SCST); 2024; pp. 7–13. [Google Scholar]
- Iglesias, D.G.; Gutiérrez, N.R.; De Cos, F.J.; Calvo, D. Analysis of the high-frequency content in human qrs complexes by the continuous wavelet transform: An automatized analysis for the prediction of sudden cardiac death. Sensors 2018, 18. [Google Scholar] [CrossRef]
- Leinveber, P.; Halamek, J.; Curila, K.; Prinzen, F.; Lipoldova, J.; Matejkova, M.; Smisek, R.; Plesinger, F.; Nagy, A.; Novak, M.; et al. Ultra-high-frequency ECG volumetric and negative derivative epicardial ventricular electrical activation pattern. Sci. Rep. 2024, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, K.; Yotsukura, M. High frequency components in the electrocardiogram. Respir. Circ. 1983, 31, 127–132. [Google Scholar] [CrossRef]
- Qiu, S.; Liu, T.; Zhan, Z.; Li, X.; Liu, X.; Xin, X.; Lu, J.; Wu, L.; Wang, L.; Cui, K.; et al. Revisiting the diagnostic and prognostic significance of high-frequency QRS analysis in cardiovascular diseases: a comprehensive review. Postgrad. Med. J. 2024, 100, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, P.; Montonen, J.; Endt, P.; Mäkijärvi, M.; Trahms, L.; Katila, T.; Toivonen, L. Magnetocardiographic intra-QRS fragmentation analysis in the identification of patients with sustained ventricular tachycardia after myocardial infarction. Pacing Clin. Electrophysiol. 2001, 24, 1179–1186. [Google Scholar] [CrossRef]
- Gödde, P.; Agrawal, R.; Müller, H.P.; Czerki, K.; Endt, P.; Steinhoff, U.; Oeff, M.; Schultheiss, H.P.; Behrens, S. Magnetocardiographic mapping of QRS fragmentation in patients with a history of malignant tachyarrhythmias. Clin. Cardiol. 2001, 24, 682–688. [Google Scholar] [CrossRef]
- Kawakami, S.; Takaki, H.; Hashimoto, S.; Kimura, Y.; Nakashima, T.; Aiba, T.; Kusano, K.F.; Kamakura, S.; Yasuda, S.; Sugimachi, M. Utility of high-resolution magnetocardiography to predict later cardiac events in nonischemic cardiomyopathy patients with normal QRS duration. Circ. J. 2017, 81, 44–51. [Google Scholar] [CrossRef]
- Lachlan, T.; He, H.; Kusano, K.; Aiba, T.; Brisinda, D.; Fenici, R.; Osman, F. Magnetocardiography in the Evaluation of Sudden Cardiac Death Risk: A Systematic Review. Ann. noninvasive Electrocardiol. Off. J. Int. Soc. Holter Noninvasive Electrocardiology, Inc 2024, 29, e70028. [Google Scholar] [CrossRef]
- Brisinda, D.; Sorbo, A.R.; Venuti, A.; Fenici, R. Percutaneous method for single-catheter multiple monophasic action potential recordings during magnetocardiographic mapping in spontaneously breathing rodents. Physiol. Meas. 2012, 33, 521–534. [Google Scholar] [CrossRef]
- Gruber, M. Proofs of the Nyquist-Shannon Sampling Theorem, 2013.
- FRANK, E. An accurate, clinically practical system for spatial vectorcardiography. Circulation 1956, 13, 737–749. [Google Scholar] [CrossRef]
- Taccardi, B. Body surface mapping and cardiac electric sources: A historical survey. J. Electrocardiol. 1990, 23, 150–154. [Google Scholar] [CrossRef]
- Wikswo, J.; Malmivuo, J.; Barry, W.; Leifer, M.; Fairbank, W. The theory and application of magnetocardiography 1979, Vol. 2.
- Katila, T., & Karp, P. Magnetocardiography: morphology and multipole presentation. In Proceedings of the Biomagnetism. An Interdisciplinary Approach; Series A: Life Sciences, V. 99. N.Y.P.P., Vii–viii., (1982). p., Eds.; New York: Plenum Press (1982)., 1983; pp. 237–263.
- Wikswo, JP, jr.; Barrach, JP; Gundersen, SC; McLean, MJ; Freeman, JA. First Magnetic Measurement of Action Currents in Isolated Cardiac Purkinje Fibers. In Proceedings of the Fourth intenational Worshop ob Biomagnetism; Romani, GL, Williamson, SJ, Eds.; Il Nuovo Cimento D, 1982; pp. 368–378. [Google Scholar]
- Cohen, D.; Kaufman, L.A. Magnetic determination of the relationship between the S-T segment shift and the injury current produced by coronary artery occlusion. Circ. Res. 1975, 36, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.; Savard, P.; Rifkin, R.D. Magnetic measurements of S-T and T-Q segment shifts in humans. Part II: Exercise-induced S-T segment depression. Circ. Res. 1983, 53, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Roth, B.J.; Wikswo, J.P. Electrically silent magnetic fields. Biophys. J. 1986, 50, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Brockmeier, K.; Schmitz, L.; De Jesus Bobadilla Chavez, J.; Burghoff, M.; Koch, H.; Zimmermann, R.; Trahms, L. Magnetocardiography and 32-lead potential mapping: Repolarization in normal subjects during pharmacologically induced stress. J. Cardiovasc. Electrophysiol. 1997, 8, 615–626. [Google Scholar] [CrossRef]
- Wikswo, J.P.J.; Barach, J.P. Possible sources of new information in the magnetocardiogram. J. Theor. Biol. 1982, 95, 721–729. [Google Scholar] [CrossRef]
- Crispino, A.; Nicoletti, M.; Loppini, A.; Gizzi, A.; Chiodo, L.; Cherubini, C.; Filippi, S. Magnetic signature of thermoelectric cardiac dynamics. Phys. Rev. E 2025, 111, 1–6. [Google Scholar] [CrossRef]
- Nicoletti, M.; Crispino, A.; Loppini, A.; Gizzi, A.; Chiodo, L.; Cherubini, C.; Filippi, S. Impact of Electric Spatially Discordant Alternans on Cardiac Magnetic Field. 2025, 1–21. [Google Scholar] [CrossRef]
- Mäkijärvi, M. Recording of abnormal late ventricular activity by high-resolution magnetocardiography. Int. J. Card. Imaging 2005, 7, 237–241. [Google Scholar] [CrossRef]
- Korhonen, P.; Husa, T.; Tierala, I.; Väänänen, H.; Mäkijärvi, M.; Katila, T.; Toivonen, L. Increased intra-QRS fragmentation in magnetocardiography as a predictor of arrhythmic events and mortality in patients with cardiac dysfunction after myocardial infarction. J. Cardiovasc. Electrophysiol. 2006, 17, 396–401. [Google Scholar] [CrossRef]
- Arekhloo, NG; Parvizi, H; Mardani, M; Sularz, AK.; Alkhouli, M; Heidar, H; Nazarpour, Kianoush. Magnetocardiography can detect ventricular arrhythmia after myocardial ischemia 1 Introduction. medRxiv Prepr. 2025, 1–11. [Google Scholar] [CrossRef]
- Rebecchi, M.; Fanisio, F.; Rizzi, F.; Politano, A.; De Ruvo, E.; Crescenzi, C.; Panattoni, G.; Squeglia, M.; Martino, A.; Sasso, S.; et al. The Autonomic Coumel Triangle: A New Way to Define the Fascinating Relationship between Atrial Fibrillation and the Autonomic Nervous System. Life 2023, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fenici, R.; Brisinda, D.; Pesola, K.; Nenonen, J. Validation of magnetocardiographic current density imaging with a non-magnetic stimulation catheter. In Proceedings of the Proceedings of the 12th International Conference on Biomagnetism, 2001; pp. 839–842. [Google Scholar]
- Park, JW; Dischl, D.; Aschbacher, K.; Kranz, D.; Brachmann, J.; Treskatsch, S.; Heidecker, B.; Landmesser, U.; Wessel, N. Editorial: Current proceedings in magnetocardiology — past, present, future. Front. Cardiovasc. Med. 2024, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Tomala, M.; Kłaczyński, M. Quantum Cardiovascular Medicine: From Hype to Hope—A Critical Review of Real-World Applications. J. Clin. Med. 2025, 14, 1–22. [Google Scholar] [CrossRef]
- Mace, S.E.; Peacock, W.F.; Stopyra, J.; Mahler, S.A.; Pearson, C.; Pena, M.; Clark, C. American Heart Journal Plus : Cardiology Research and Practice Accelerated magnetocardiography in the evaluation of patients with suspected cardiac ischemia : The MAGNETO trial. Am. Hear. J. Plus Cardiol. Res. Pract. 2024, 40, 100372. [Google Scholar] [CrossRef]
- Fenici, R.; Nenonen, J.; Pesola, K.; Korhonen, P.; Lötjönen, J.; Mäkijärvi, M.; Toivonen, L.; Poutanen, V.P.; Keto, P.; Katila, T. Nonfluoroscopic localization of an amagnetic stimulation catheter by multichannel magnetocardiography. PACE - Pacing Clin. Electrophysiol. 1999, 22, 1210–1220. [Google Scholar] [CrossRef]
- Lombardi, G.; Sorbo, A.R.; Guida, G.; La Brocca, L.; Fenici, R.; Brisinda, D. Magnetocardiographic classification and non-invasive electro-anatomical imaging of outflow tract ventricular arrhythmias in recreational sport activity practitioners. J. Electrocardiol. 2018, 51, 433–439. [Google Scholar] [CrossRef]
- Aita, S.; Ogata, K.; Yoshida, K.; Inaba, T.; Kosuge, H.; Machino, T.; Tsumagari, Y.; Hattori, A.; Ito, Y.; Komatsu, Y.; et al. Noninvasive Mapping of Premature Ventricular Contractions by Merging Magnetocardiography and Computed Tomography. JACC Clin. Electrophysiol. 2019, 5, 1144–1157. [Google Scholar] [CrossRef]
- Engelhardt, E.; Elzenheimer, E.; Hoffmann, J.; Meledeth, C.; Frey, N.; Schmidt, G. Non-Invasive Electroanatomical Mapping: A State-Space Approach for Myocardial Current Density Estimation. Bioengineering 2023, 10, 1–15. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.; Liu, Z.; Wang, Y.; Han, X.; Jia, Y.; Pang, J.; Xie, F.; Yu, D.; Zhang, Y.; et al. Co-registration of OPM-MCG signals with CT using optical scanning. iScience 2023, 26, 108235. [Google Scholar] [CrossRef]
- He, J.; Yang, S.; Jia, Y.; Liang, S.; Zhu, Y.; Qi, J.; Shang, S.; Wang, A.; Zhao, T.; Wei, C.; et al. Optical co-registration method of OPM-MCG and MRI based on skin markers. Measurement 2025, 256, 118319. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
