With the rapid development of the automotive industry, autonomous driving has attracted growing research interest, among which path planning and trajectory tracking play a central role. To better understand the evolution, current status, and future directions of this field, this study conducts a comprehensive bibliometric analysis combined with latent Dirichlet allocation (LDA) topic modeling on publications related to autonomous vehicle path planning and trajectory tracking indexed in the Web of Science database. Multiple dimensions are examined, including publication trends, highly cited authors, leading institutions, research domains, and keyword co-occurrence patterns. The results reveal a sustained growth in research output, with trajectory planning, path optimization, trajectory tracking, and model predictive control emerging as dominant topics, alongside a notable rise in learning-based approaches. In particular, reinforcement learning and deep reinforcement learning have become increasingly prominent in complex decision-making and tracking control scenarios. The analysis further identifies core contributors and institutions, highlighting the leading roles of China and the United States in this research area. Overall, the findings provide a systematic overview of the knowledge structure and evolving research trends, offering valuable insights into key opportunities and challenges and supporting future research toward safer and more intelligent autonomous driving systems.