Submitted:
27 December 2025
Posted:
30 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Research Methods and Materials
2.1. Research Methods
2.1.1. Bibliometric Analysis Method
2.1.2. Method for Analyzing Published Authors
2.1.3. Keyword Analysis Method
2.1.4. Keyword Emergence Analysis Method
2.2. Autonomous Vehicle Algorithm System Architecture
2.3. Origins of Data and Retrieval Methods
3. Analysis of Basic Characteristics of Autonomous Vehicle Path Planning and Trajectory Tracking Research
3.1. Descriptive Statistics
3.2. Analysis of Lead Authors
3.3. Publishing Institutions and Country
3.4. The Most Influential Publishing Institutions
3.5. Research Field Analysis
3.6. Keyword Co-Occurrence Analysis
3.7. Analysis of Emerging Research Frontiers at Different Stages
3.8. Most Influential Articles
3.9. Co-Citations
4. Discussion
4.1. Research on the Application of Path Planning and Trajectory Tracking Based on Vehicle Model
4.2. Research on Data-Driven MPC for Path Planning and Trajectory Tracking
4.3. Research on the Application of Decision-Making Methods Based on Game Theory in Path Planning and Trajectory Tracking
4.4. Research on the Application of Partially Observable Markov Decision Process (POMDP) in Path Planning and Trajectory Tracking
4.5. Research on the Application of Path Planning and Trajectory Tracking Based on End-To-End Reinforcement Learning
5. Conclusions and Future Work
5.1. Conclusions
- (1)
- In terms of the number of publications and the time of publication, research in the field of autonomous vehicle path planning and trajectory tracking has been on the rise, especially in the past five years.
- (2)
- In terms of main authors, Li Keqiang's team at Tsinghua University ranks first in terms of the number of publications and citation frequency, with strong academic influence and wide recognition; other influential authors include Chen Yimin's team and Bitar Glenn's team.
- (3)
- Tsinghua University, the Norwegian University of Science and Technology (NTNU), and the Beijing Institute of Technology (BIT) lead this field in both publication volume and citation impact. Their prolific output establishes them as the foremost research institutions.
- (4)
- The main contributions in this field originate from a select group of countries, namely China, the United States, Norway, India, and the United Kingdom. Furthermore, China exhibits the most extensive international collaboration network, working closely with partners such as the United States, Australia, and Canada.
- (5)
- In terms of publishing institution influence, IEEE, Elsevier, and MDPI are the main publishing platforms, accounting for 76% of the total publication volume. Among them, IEEE has a particularly significant influence due to its authoritative position in the field of electrical and electronic engineering.
- (6)
- From the perspective of research field distribution, engineering, electrical and electronic engineering, automated control systems, and computer science are the main research directions in this field. The publication frequency and betweenness centrality values of these fields are relatively high, indicating that they occupy a core position in academic research.
- (7)
- Keyword co-occurrence results show that trajectory tracking, trajectory planning, motion planning, and model predictive control appear most frequently, reflecting the core technologies in this field. A keyword emergence analysis identifies deep learning and reinforcement learning as rising trends, highlighting their growing application in creating path planning and trajectory tracking solutions for autonomous vehicles.
- (8)
- Judging from the co-citation map of the literature, the literature nodes of Ji J (2017), Paden B (2016) and Andersson JAE (2019) are the largest, among which the literature of Ji J (2017) ranks first in both citation frequency and betweenness centrality, highlighting the important position of the author in this subject field.
6. Future Work
- (1)
- In the future, as deep learning algorithms continue to evolve, end-to-end autonomous driving models will become the mainstream trend. These models integrate multiple modules, such as decision-making, planning, and control, into a unified neural network, directly mapping raw sensor inputs to vehicle control commands or driving trajectories. End-to-end learning avoids the information loss and error accumulation associated with traditional modular architectures, enabling joint optimization of all links and significantly improving the overall performance and generalization capabilities of the system. Large models based on the Transformer architecture, in particular, demonstrate significant potential for processing multimodal data, understanding complex scenarios, and long-term dependencies due to their powerful sequence modeling and parallel processing capabilities. As computing power increases and data volumes accumulate, autonomous driving models with larger parameters and stronger capabilities will continue to emerge. These models will combine advanced AI technologies such as reinforcement learning, imitation learning, and world models to enable vehicles to approach or even surpass human driving capabilities in path planning and trajectory tracking, providing stronger support for the safe and efficient operation of autonomous vehicles.
- (2)
- As a pivotal element of intelligent transportation systems, V2X technology offers robust support for the navigation and motion control of highly autonomous vehicles through improved path planning and trajectory tracking. Through V2X communication, vehicles can exchange information in real time with all relevant entities, encompassing surrounding vehicles (V2V), roadside infrastructure (V2I), pedestrians (V2P), and cloud networks (V2N/V2C), providing a broader perspective and earlier warnings. V2X technology can also help vehicles achieve collaborative driving, such as platooning, to improve traffic efficiency and reduce energy consumption. With the popularization of 5G/6G communication technology and the widespread deployment of roadside intelligent devices, V2X technology will be deeply integrated with single-vehicle intelligence to jointly build a safer, more efficient and smarter future transportation system, making the path planning and trajectory tracking of autonomous vehicles more accurate and reliable.
Author Contributions
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, W. W. Local Path Planningand Tracking of Autonomous Driving Cars. Eng. Technol. II 2019. [Google Scholar] [CrossRef]
- Yan, P. K. Research on Unmanned Vehicle Path Planning and Trajectory Tracking Technology. 2024. [Google Scholar] [CrossRef]
- Dijkstra, E. W. A Note on Two Problems in Connexion with Graphs. Edsger Wybe Dijkstra: His Life, Work, and Legacy 2022, 45, 287–290. [Google Scholar] [CrossRef]
- Hart, P. E.; Nilsson, N. J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Man Cybern. Syst. 1968, 4(2), 100–107. [Google Scholar] [CrossRef]
- Meng, S. L. LLM-A*: Large Language Model Enhanced Incremental Heuristic Search on Path Planning. 2025. [Google Scholar] [CrossRef]
- Chiang, H. T. L.; Hsu, J.; Fiser, M.; Tapia, L.; Faust, A. RL-RRT: Kinodynamic Motion Planning via Learning Reachability Estimators From RL Policies. IEEE Robot. Autom. Lett. 2019, 4(4), 4298–4305. [Google Scholar] [CrossRef]
- Xu, W. D.; Pan, J.; Wei, J. Q.; Dolan, J. M. Motion Planning under Uncertainty for On-Road Autonomous Driving. IEEE ICRA 2014, 2507–2512. [Google Scholar] [CrossRef]
- Nguyen, H. D.; Vu, M. N.; Nam, N. N.; Han, K. Ieee Hierarchical Motion Planning and Offline Robust Model Predictive Control for Autonomous Vehicles. American Control Conference (ACC) 2024, 4936–4941. [Google Scholar] [CrossRef]
- Ding, W. C.; Zhang, L.; Chen, J.; Shen, S. J. Safe Trajectory Generation for Complex Urban Environments Using Spatio-Temporal Semantic Corridor. IEEE Robot. Autom. Lett. 2019, 4(3), 2997–3004. [Google Scholar] [CrossRef]
- Zhang, D. K.; Liang, J. M.; Guo, K.; Lu, S.; Wang, Q.; Xiong, R.; Miao, Z. W.; Wang, Y. CarPlanner: Consistent Auto-regressive Trajectory Planning for Large-scale Reinforcement Learning in Autonomous Driving. CVPR 2025. [Google Scholar] [CrossRef]
- Han, Z. C.; Tian, M. Z.; Gongye, Z.; Xue, D. L.; Xing, J. X.; Wang, Q. H.; Gao, Y. M.; Wang, J. P.; Xu, C.; Gao, F. Hierarchically depicting vehicle trajectory with stability in complex environments. Sci. Robot. 2025, 10(103), 15. [Google Scholar] [CrossRef] [PubMed]
- Deng, J. X.; Zha, Y. F. Overview of the Development of Autonomous Vehicle Path TrackingControl. Automot. Dig. 2023, (5), 1–8. [Google Scholar] [CrossRef]
- Lu, A.; Lu, Z. W.; Li, R. F.; Tian, G. Y. Adaptive LQR Path Tracking Control for 4WS Electric Vehicles Based on Genetic Algorithm. 2022 6th CAA International Conference on Vehicular Control and Intelligence (CVCI); 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Zhao, C. Y.; Li, B. Q.; Zhu, C. F.; Shi, W. X.; Zhang, X. B. Lateral Control for UGVs by ADRC With Modeling Compensation and Expanded Disturbance Observation. IEEE Trans. Ind. Electron. 2025, 72(9), 9354–9366. [Google Scholar] [CrossRef]
- Zang, Y. H.; Yang, A. X.; Li, L. Y. Trajectory Tracking Control Method Based on Curvature-adaptive LTV-MPC J. Anhui Polytech. Univ. 2025, 40(01), 22–30. [Google Scholar]
- Zhang, T.; Jiao, X. H.; Li, X. K. Improved adaptive iterative learning trajectory tracking control with adaptive high-order internal model for autonomous farming vehicle. Comput. Electron. Agric. 2025, 236, 11. [Google Scholar] [CrossRef]
- Yang, D. S.; Liu, D.; Han, B.; Lu, G. X.; Kong, L. G.; Huang, C. S.; Li, J. Trajectory planning and tracking control for vehicles with tire blowout in complex traffic flows. Sci. China-Inf. Sci. 2025, 68(3), 22. [Google Scholar] [CrossRef]
- Wang, C. Y.; Zhang, Y. Z.; Zhang, Y.; Li, B. F. A bibliometric analysis of gastric cancer liver metastases: advances in mechanisms of occurrence and treatment options. Int. J. Surg. 2024, 110(4), 2288–2299. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57(3), 359–377. [Google Scholar] [CrossRef]
- Dong, Y. B.; Pan, H. Z.; Wang, L.; Tang, Z. G. Bibliometric visualization analysis of soil salinization remote sensing. J. China Agric. Resour. Reg. Plann 2024, 45(9), 236–248. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheng, Y.; Chen, X. Visual analysis of international knowledge sharing research hotspots and frontiers. Sci. Technol. Manag. 2022, 24(2). [Google Scholar] [CrossRef]
- Zhang, W. Y.; Cao, L. J.; Li, Y. F.; Ma, B.; Yang, K. H. Analysis of hotspots and frontiers of frailty research: a visualization analysis based on CiteSpace. Chin. J. Evid.-Based Med. 2020, 20(11), 1308–1315. [Google Scholar] [CrossRef]
- Yan, S. H.; Gao, Y. M.; Wang, H. R.; Li, J. S.; Wang, X. Y. Research status of agricultural brackish water irrigation based on CiteSpace. Sci. Soil Water Conserv. 2021, 19(5), 132–141. [Google Scholar] [CrossRef]
- Dong, H. B.; Liu, S. B.; Bolormaa, D.; Hou, X. Y. Research on domestic ecological compensation based on CiteSpace. Acta Ecol. Sin. 2020, 42(20), 8521–8529. [Google Scholar] [CrossRef]
- Li, W. Y. Analysis of the core authors of Archives Management from 1995 to 2005. File Manag. 2006, (04), 48–50. [Google Scholar]
- Chen, Y.; Chen, C. M.; Liu, Z. Y.; Hu, Z. G.; Wang, X. W. The methodology function of Cite Space mapping knowledge domains. Studies in Science of Science 2015, 33(02), 242–253. [Google Scholar] [CrossRef]
- Price, D. J. D. A general theory of bibliometric and other cumulative advantage processes. J. Am. Soc. Inf. Sci. 1976, 27(5-6), 292–306. [Google Scholar] [CrossRef]
- Chen, C. M.; Ibekwe-SanJuan, F.; Hou, J. H. The Structure and Dynamics of Co-Citation Clusters: A Multiple-Perspective Co-Citation Analysis. Arxiv 2010, arXiv:1002.1985. [Google Scholar]
- Kleinberg, J. Bursty and hierarchical structure in streams. Data Min. Knowl. Discov. 2003, 7(4), 373–397. [Google Scholar] [CrossRef]
- Zhu, B.; Jia, S. Z.; Zhao, J.; Han, J. Y.; Zhang, P. X.; Song, D. J. Review of Research on Decision-making and Planning for Automated Vehicles. ChinaJ.Highw.Transp 2023, 37(1). [Google Scholar] [CrossRef]
- Li, L. Z.; Ota, K. R.; Dong, M. X. Humanlike Driving: Empirical Decision-Making System for Autonomous Vehicles. IEEE Trans. Veh. Technol. 2018, 67(8), 6814–6823. [Google Scholar] [CrossRef]
- Xie, J. W.; Li, D. Design and Application of Autonomous Driving System based on Multi-sensor Fusion. ICMLCA; 2021. [Google Scholar]
- Gonzalez, D.; Perez, J.; Milanes, V.; Nashashibi, F. A Review of Motion Planning Techniques for Automated Vehicles. IEEE Trans. Intell. Transp. Syst. 2016, 17(4), 1135–1145. [Google Scholar] [CrossRef]
- Kong, J.; Pfeiffer, M.; Schildbach, G.; Borrelli, F. Kinematic and Dynamic Vehicle Models for Autonomous Driving Control Design. IEEE IV 2015, 1094–1099. [Google Scholar] [CrossRef]
- Raffo, G. V.; Gomes, G. K.; Normey-Rico, J. E.; Kelber, C. R.; Becker, L. B. A Predictive Controller for Autonomous Vehicle Path Tracking. IEEE Trans. Intell. Transp. Syst. 2009, 10(1), 92–102. [Google Scholar] [CrossRef]
- Bramer, W. M.; Rethlefsen, M. L.; Kleijnen, J.; Franco, O. H. Optimal database combinations for literature searches in systematic reviews: a prospective exploratory study. Syst. Rev. 2017, 6, 12. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W. M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Hu, C. P.; Hu, J. M.; Deng, S. L.; Liu, Y. A co-word analysis of library and information science in China. Scientometrics 2013, 97(2), 369–382. [Google Scholar] [CrossRef]
- Bornmann, L.; Ye, A.; Ye, F. Identifying "hot papers" and papers with "delayed recognition" in large-scale datasets by using dynamically normalized citation impact scores. Scientometrics 2018, 116(2), 655–674. [Google Scholar] [CrossRef]
- Bornmann, L.; Haunschild, R.; Mutz, R. Growth rates of modern science: a latent piecewise growth curve approach to model publication numbers from established and new literature databases. Hum. Soc. Sci. Commun. 2021, 8(1), 15. [Google Scholar] [CrossRef]
- Price, D. J. d. S. Networks of Scientific Papers. Science 1965, 149(3683), 510–515. [Google Scholar] [CrossRef]
- Nakis, N.; Çelikkanat, A.; Boucherie, L.; Lehmann, S.; Morup, M. Time to Cite: Modeling Citation Networks using the Dynamic Impact Single-Event Embedding Model. 27th International Conference on Artificial Intelligence and Statistics (AISTATS); 2024; p. 238. [Google Scholar] [CrossRef]
- Shibata, N.; Kajikawa, Y.; Takeda, Y.; Matsushima, K. Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation 2008, 28(11), 758–775. [Google Scholar] [CrossRef]
- Sheng, X. P.; Tang, Y. J. Research on open sharing cooperation from the perspective of open access journals: Taking Plos One citing articles as an example. Libr. Inf. Work. 2021, 65(23), 31–40. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, J. J.; Li, X. J.; Zhou, X. F. Adaptive routing protocol based on ant algorithm for P2P networks. Comput. Eng. Appl. 2010, 46(17), 101–104. [Google Scholar] [CrossRef]
- Sahoo, A.; Dwivedy, S. K.; Robi, P. S. Advancements in the field of autonomous underwater vehicle. Ocean Eng. 2019, 181, 145–160. [Google Scholar] [CrossRef]
- Wang, S. Y.; Yu, J. A Bibliometric Research on Next-Generation Vehicles Using CiteSpace. Recycling 2021, 6(1). [Google Scholar] [CrossRef]
- Simoes, F.; Unay-Gailhard, I.; Mujcinovic, A.; Fernandes, B. How to Foster Rural Sustainability through Farming Workforce Rejuvenation? Looking into Involuntary Newcomers’ Spatial (Im)mobilities. Sustainability 2021, 13. [Google Scholar] [CrossRef]
- Purwanto, E. A Bibliometric Analysis of Trends and Collaborations in Autonomous Driving Research (2002-2024). Mechatron. Intell. Transp. Syst. 2024, 3(2). [Google Scholar] [CrossRef]
- Ozyurt, O.; Cagiltay, N. E.; Ozyurt, H.; Akgun, A. A systematic review and mapping of the literature of virtual reality studies in earth science engineering education. J. Pedagog. Res. 2021, 5(2), 237–256. [Google Scholar] [CrossRef]
- Feng, J. K.; Yang, Y. S.; Zhang, H. C.; Sun, S.; Xu, B. W. Path Planning and Trajectory Tracking for Autonomous Obstacle Avoidance in Automated Guided Vehicles at Automated Terminals. Axioms 2024, 13(1), 20. [Google Scholar] [CrossRef]
- Callon, M.; Courtial, J. P.; Turner, W. A.; Bauin, S. From translations to problematic networks: An introduction to co-word analysis. Soc. Sci. Inf. Sci. Soc. 1983, 22(2), 191–235. [Google Scholar] [CrossRef]
- Pourhatami, A.; Kaviyani-Charati, M.; Kargar, B.; Baziyad, H.; Kargar, M.; Olmeda-Gómez, C. Mapping the intellectual structure of the coronavirus field (2000-2020): a co-word analysis. Scientometrics 2021, 126(8), 6625–6657. [Google Scholar] [CrossRef] [PubMed]
- Paden, B.; Cap, M.; Yong, S. Z.; Yershov, D.; Frazzoli, E. A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles. IEEE T. Intell. Veh. 2016, 1(1), 33–55. [Google Scholar] [CrossRef]
- Durrant-Whyte, H.; Bailey, T. Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 2006, 13(2), 99–108. [Google Scholar] [CrossRef]
- Schwarting, W.; Alonso-Mora, J.; Rus, D. Planning and Decision-Making for Autonomous Vehicles. Annu. Rev. Control Robot. Auton. Syst. 2018, 1, 187–210. [Google Scholar] [CrossRef]
- Lee, S. H.; Lee, Y. O.; Son, Y.; Chung, C. C. Multirate Active Steering Control for Autonomous Vehicle Lateral Maneuvering. IEEE IV 2012, 772–777. [Google Scholar] [CrossRef]
- Yu, S. Y.; Hirche, M.; Huang, Y. J.; Chen, H.; Allgöwer, F. Model predictive control for autonomous ground vehicles: a review. Auton. Intell. Syst. 2021, 1(1). [Google Scholar] [CrossRef]
- Dixit, S.; Fallah, S.; Montanaro, U.; Dianati, M.; Stevens, A.; McCullough, F.; Mouzakitis, A. Trajectory planning and tracking for autonomous overtaking: State-of-the-art and future prospects. Annu. Rev. Control. 2018, 45, 76–86. [Google Scholar] [CrossRef]
- Ding, Q. X.; Jiang, W. J.; Tong, T.; Wang, Q.; Ma, Y. H. Bibliometric Analysis of Soil Quality RemoteSensing Literature Based on CiteSpace. Chin. J. Soil Sci. 2023, 54(03), 721–729. [Google Scholar] [CrossRef]
- Kuutti, S.; Bowden, R.; Jin, Y. C.; Barber, P.; Fallah, S. A Survey of Deep Learning Applications to Autonomous Vehicle Control. IEEE Trans. Intell. Transp. Syst. 2021, 22(2), 712–733. [Google Scholar] [CrossRef]
- Luo, Y. G.; Xiang, Y.; Cao, K.; Li, K. Q. A dynamic automated lane change maneuver based on vehicle-to-vehicle communication. Transp. Res. Pt. C-Emerg. Technol. 2016, 62, 87–102. [Google Scholar] [CrossRef]
- Zhang, W. B.; Jiang, L. J.; Ge, X. X.; Wang, Y. J.; Liang, J.; Li, Y. H. Hot spot analysis and future prospect of rural homestead research in China:Quantitative analysis based on CNKI and CiteSpace. J. Arid Land Resour. Environ. 2022, 36(1), 16–25. [Google Scholar] [CrossRef]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.; Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg, S.; Hassabis, D. Human-level control through deep reinforcement learning. Nature 2015, 518(7540), 529–533. [Google Scholar] [CrossRef]
- Fossen, T. I.; Pettersen, K. Y.; Galeazzi, R. Line-of-Sight Path Following for Dubins Paths With Adaptive Sideslip Compensation of Drift Forces. IEEE Trans. Control Syst. Technol. 2015, 23(2), 820–827. [Google Scholar] [CrossRef]
- Eskandarian, A.; Wu, C. X.; Sun, C. Y. Research Advances and Challenges of Autonomous and Connected Ground Vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 22(2), 683–711. [Google Scholar] [CrossRef]
- Shen, C.; Shi, Y.; Buckham, B. Integrated Path Planning and Tracking Control of an AUV: A Unified Receding Horizon Optimization Approach. IEEE-ASME Trans. Mechatron. 2017, 22(3), 1163–1173. [Google Scholar] [CrossRef]
- You, F.; Zhang, R. H.; Lie, G.; Wang, H. W.; Wen, H. Y.; Xu, J. M. Trajectory planning and tracking control for autonomous lane change maneuver based on the cooperative vehicle infrastructure system. Expert Syst. Appl. 2015, 42(14), 5932–5946. [Google Scholar] [CrossRef]
- Antonelli, G.; Chiaverini, S.; Fusco, G. A fuzzy-logic-based approach for mobile robot path tracking. IEEE Trans. Fuzzy Syst. 2007, 15(2), 211–221. [Google Scholar] [CrossRef]
- Chai, R. Q.; Liu, D. R.; Liu, T. H.; Tsourdos, A.; Xia, Y. Q.; Chai, S. C. Deep Learning-Based Trajectory Planning and Control for Autonomous Ground Vehicle Parking Maneuver. IEEE Trans. Autom. Sci. Eng. 2023, 20(3), 1633–1647. [Google Scholar] [CrossRef]
- Zuo, Z. Q.; Yang, X.; Li, Z.; Wang, Y. J.; Han, Q. N.; Wang, L.; Luo, X. Y. MPC-Based Cooperative Control Strategy of Path Planning and Trajectory Tracking for Intelligent Vehicles. IEEE T. Intell. Veh. 2021, 6(3), 513–522. [Google Scholar] [CrossRef]
- Marshakova, I. V. System of document connections based on references. Nauchn.-Tekh. Inf., Ser. 2 Inf. Protsessy Sist. 1973, (6), 3–8. [Google Scholar]
- White, H. D.; McCain, K. W. Visualizing a discipline: An author co-citation analysis of information science, 1972-1995. J. Am. Soc. Inf. Sci. 1998, 49(4), 327–355. [Google Scholar] [CrossRef]
- Ji, J.; Khajepour, A.; Melek, W. W.; Huang, Y. J. Path Planning and Tracking for Vehicle Collision Avoidance Based on Model Predictive Control With Multiconstraints. IEEE Trans. Veh. Technol. 2017, 66(2), 952–964. [Google Scholar] [CrossRef]
- Andersson, J. A. E.; Gillis, J.; Horn, G.; Rawlings, J. B.; Diehl, M. CasADi: a software framework for nonlinear optimization and optimal control. Math. Program. Comput. 2019, 11(1), 1–36. [Google Scholar] [CrossRef]
- Ji, J.; Tang, Z. R.; Wu, M. Y.; Fang, J. C. Path Planning and Tracking for Lane Changing Based on Model Predictive Control. China J. Highw. Transp. 2018, 31(04), 172–179. [Google Scholar] [CrossRef]
- Deng, G. H.; Xiao, H. X.; Han, L. H.; Wu, P. F.; Zhang, Y.; Qin, L. Vehicle Tracking Control of Lateral and Longitudinal Based on Model Predictive Control. 2021, 35(11), 18–26+57. [Google Scholar] [CrossRef]
- Pardo, B. J. D. Optimisation of racing car suspensions featuring inerters. 2012. [Google Scholar]
- Qiao, B. S.; Feng, Y.; Jiang, Z. W.; Yang, Z. Y. Comparison of Intelligent Vehicle Track Tracking Method Based onModel Predictive Control. J. Hubei Univ. Automot. Technol. 2020, 34(02), 24–28+34. [Google Scholar] [CrossRef]
- Zhou, X. C.; Liu, R. Q.; Zhou, J. Y.; Zhang, Z. Y.; Wang, C. Y.; Zhao, W. Z. Robust Tube-MPC Trajectory Tracking Control for Four-Wheel Independent Steering Vehicles on Intermittent Snowy and Icy Roads. Chin. J. Mech. Eng. 2025, 38(1), 19. [Google Scholar] [CrossRef]
- Kumar, N.; Pachamuthu, R. Real-Time LPV-Based Non-Linear Model Predictive Control for Robust Trajectory Tracking in Autonomous Vehicles. Arxiv 2025. [Google Scholar] [CrossRef]
- Lucia, S.; Navarro, D.; Karg, B.; Sarnago, H.; Lucia, O. Deep Learning-Based Model Predictive Control for Resonant Power Converters. IEEE Trans. Ind. Inform. 2021, 17(1), 409–420. [Google Scholar] [CrossRef]
- Heshmati-alamdari, S.; Karras, G. C.; Marantos, P.; Kyriakopoulos, K. J. A Robust Model Predictive Control Approach for Autonomous Underwater Vehicles Operating in a Constrained workspace. IEEE ICRA 2018, 6183–6188. [Google Scholar] [CrossRef]
- Sun, K.; Zhang, N. N.; Li, Z. H.; Ding, H. T.; Zhang, H. S.; Jiang, C. H. Improved MPC for trajectory planning of self-driving cars. PLoS One 2025, 20(6), 33. [Google Scholar] [CrossRef]
- Hobbani, H.; Perez-Pena, F.; Schmidt, K. Modelling and Identification of a Tracked Mobile Robot: A Real-time Feasible Approach Using Particle Swarm Optimization and Information Criteria. Int. J. Control Autom. Syst. 2025, 23(9), 2687–2703. [Google Scholar] [CrossRef]
- Han, M.; He, H. W.; Shi, M.; Liu, W.; Cao, J. F.; Wu, J. D. Research on Learning-Based Model Predictive Path Tracking Control forAutonomous Vehicles. Automot. Eng. 2024, 46(07), 1197–1207. [Google Scholar] [CrossRef]
- Xiao, Y. Q.; Zhang, X. L.; Xu, X.; Liu, X. Q.; Liu, J. H. Deep Neural Networks With Koopman Operators for Modeling and Control of Autonomous Vehicles. IEEE T. Intell. Veh. 2023, 8(1), 135–146. [Google Scholar] [CrossRef]
- Yang, S.; Li, S. Z.; Zhao, Z. Y.; Huang, X. P.; Huang, Y. J. Integrated Autonomous Driving Lane Change Policy Based on TemporalDifference Learning Model Predictive Control. J. Mech. Eng. 2024, 60(10), 329–338. [Google Scholar] [CrossRef]
- Sadigh, D.; Sastry, S.; Seshia, S. A.; Dragan, A. D. Planning for autonomous cars that leverage effects on human actions. RSS 2016, 2, 1–9. [Google Scholar] [CrossRef]
- Fisac, J. F.; Bronstein, E.; Stefansson, E.; Sadigh, D.; Sastry, S. S.; Dragan, A. D. Hierarchical Game-Theoretic Planning for Autonomous Vehicles. IEEE ICRA 2019, 9590–9596. [Google Scholar] [CrossRef]
- Schwarting, W.; Pierson, A.; Alonso-Mora, J.; Karaman, S.; Rus, D. Social behavior for autonomous vehicles. Proc. Natl. Acad. Sci. U. S. A 2019, 116(50), 24972–24978. [Google Scholar] [CrossRef]
- Zhang, Q. Y.; Langari, R.; Tseng, H. E.; Mohan, S.; Szwabowski, S.; Filev, D. Stackelberg Differential Lane Change Game Based on MPC and Inverse MPC. IEEE Trans. Intell. Transp. Syst. 2024, 25(8), 8473–8485. [Google Scholar] [CrossRef]
- Zhang, C. J.; Wang, J.; Hu, S. Y. A Motion Planning Framework Based on Stackelberg Games for Autonomous Driving in Interactive Scenarios. In Advances in Dynamics of Vehicles on Roads and Tracks III; 2024; pp. 461–470. [Google Scholar] [CrossRef]
- Zanardi, A.; Zardini, G.; Srinivasan, S.; Bolognani, S.; Censi, A.; Dörfler, F.; Frazzoli, E. Posetal Games: Efficiency, Existence, and Refinement of Equilibria in Games With Prioritized Metrics. IEEE Robot. Autom. Lett. 2022, 7(2), 1292–1299. [Google Scholar] [CrossRef]
- Nan, J.; Deng, W.; Zheng, B. Intention Prediction and Mixed Strategy Nash Equilibrium-Based Decision-Making Framework for Autonomous Driving in Uncontrolled Intersection. IEEE Trans. Veh. Technol. 2022, 71(10), 10316–10326. [Google Scholar] [CrossRef]
- Kollarcik, A.; Hanzalek, Z. Parameter Adjustments in POMDP-Based Trajectory Planning for Unsignalized Intersections. 2024, 522–529. [Google Scholar] [CrossRef]
- Jin, X. J.; Zeng, C. D.; Zhu, S. F.; Liu, C. X.; Cai, P. P. BoT-Drive: Hierarchical Behavior and Trajectory Planning for Autonomous Driving using POMDPs. Arxiv 2024. [Google Scholar] [CrossRef]
- Brechtel, S.; Gindele, T.; Dillmann, R. Probabilistic decision-making under uncertainty for autonomous driving using continuous POMDPs. ITSC 2014, 392–399. [Google Scholar] [CrossRef]
- Snider, J. M. Automatic Steering Methods for Autonomous Automobile Path Tracking. CMU RI; 2009. [Google Scholar]
- Koenig, S.; Likhachev, M. Fast replanning for navigation in unknown terrain. IEEE Trans. Robot. 2005, 21(3), 354–363. [Google Scholar] [CrossRef]
- He, Z. C.; Dong, L.; Sun, C. Y.; Wang, J. W. Asynchronous Multithreading Reinforcement-Learning-Based Path Planning and Tracking for Unmanned Underwater Vehicle. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52(5), 2757–2769. [Google Scholar] [CrossRef]
- Levine, S.; Finn, C.; Darrell, T.; Abbeel, P. End-to-End Training of Deep Visuomotor Policies. J. Mach. Learn. Res. 2016, 17, 40. [Google Scholar]
- Ames, A. D.; Coogan, S.; Egerstedt, M.; Notomista, G.; Sreenath, K.; Tabuada, P. Control Barrier Functions: Theory and Applications. 18th ECC 2019, 3420–3431. [Google Scholar] [CrossRef]
- Patrinos, P.; Bemporad, A. An Accelerated Dual Gradient-Projection Algorithm for Embedded Linear Model Predictive Control. IEEE Trans. Autom. Control. 2014, 59(1), 18–33. [Google Scholar] [CrossRef]
- Wen, J.; Liang, X. F.; Wang, Y. W. Path tracking control of rice pollination robot based on DDPG+MPC J. Agric. Mech. Res. 2025, 47(06), 18–25. [Google Scholar] [CrossRef]
- Liu, Q. J.; Xiong, P. X.; Zhu, Q. Y.; Xiao, W.; Wang, K. J.; Hu, G. L.; Li, G. A DDPG-based Path Following Control Strategy for Autonomous Vehicles by Integrated Imitation Learning and Feedforward Exploration. Chin. J. Mech. Eng. 2025, 38(1), 174. [Google Scholar] [CrossRef]
- Lai, J. L.; Wu, Z. Z.; Ren, Z. G.; Tan, Q.; Xie, S. L. Trajectory planning of mobile robot: A Lyapunov-based reinforcement learning approach with implicit policy. Knowledge-Based Syst. 2025, 325, 15. [Google Scholar] [CrossRef]
- Yuan, K.; Huang, Y. J.; Yang, S.; Zhou, Z. W.; Wang, Y. L.; Cao, D. P.; Chen, H. Evolutionary Decision-Making and Planning for Autonomous Driving Based on Safe and Rational Exploration and Exploitation. Engineering 2024, 33, 108–120. [Google Scholar] [CrossRef]
- Zhang, R. X.; Wu, C. X.; Sun, T. C.; Zhao, Z. S. Progress on Deep Reinforcement Learning in Path Planning Comput. Eng. Appl. 2021, 57(19), 44–56. [Google Scholar] [CrossRef]











| Search Keywords |
| "Autonomous" OR "Self-Driving" OR "Driverless" OR "Self-Piloting" |
| "Motion Planning" OR "Trajectory Planning" OR "Path Planning" |
| "Trajectory Tracking" OR "Path Following" |
| "Vehicle" OR "Car" OR "Automobile" OR "Motor Vehicle" OR "Motorcar" |
| Author | Publications | Institution | Country |
| Li K.Q. | 5 | Tsinghua University | China |
| Chen Y.M. | 4 | Northwestern Polytech University | China |
| Melchior P. | 3 | Centre National de la Recherche Scientifique | France |
| Pascoal A. | 3 | University of Lisbon | Portugal |
| Nie Z.G. | 3 | Kunming University of Science & Technology | China |
| Di Cairano S. | 3 | Mitsubishi Electric Research Laboratories | USA |
| Yue M. | 3 | Dalian University of Technology | China |
| Lian Y.F. | 3 | Changchun University of Technology | China |
| Marzbani H. | 3 | RMIT University | Australia |
| Receveur J.-B. | 3 | University of Bordeaux | France |
| Author | Publications | Citations | Country |
| Sahoo A., Dwivedy S. K., & Robi P. S.[46] | 2 | 454 | India |
| Li Keqiang | 5 | 388 | China |
| Shi Yang | 2 | 268 | Canada |
| Luo Yugong | 2 | 251 | China |
| Lie Guo | 2 | 210 | China |
| Shen Chao | 2 | 205 | Canada |
| Wang Junmin | 3 | 174 | USA |
| Luo Xiaoyuan | 2 | 129 | China |
| Chu Duanfeng | 2 | 120 | China |
| Zhao Chenyang | 2 | 102 | China |
| Institution | Publications | Citations | Country |
| Tsinghua university | 10 | 545 | China |
| Norwegian university of science technology | 6 | 538 | Norway |
| Beijing Institute of technology | 17 | 504 | China |
| National Institute of technology system | 3 | 490 | India |
| Indian institute of technology system | 7 | 484 | India |
| Wuhan university of technology | 3 | 347 | China |
| Chinese academy of sciences | 3 | 275 | China |
| Virginia polytechnic institute state university | 3 | 241 | USA |
| University of Texas Austin | 4 | 223 | USA |
| Dalian University of technology | 5 | 221 | China |
| Publishing institutions | Publications | Citations |
| IEEE | 159 | 3129 |
| Elsevier | 52 | 1768 |
| MDPI | 39 | 185 |
| Sage | 21 | 268 |
| Springer Nature | 13 | 289 |
| Wiley | 8 | 132 |
| Taylor & Francis | 6 | 40 |
| Amer Soc Mechanical Engineers | 4 | 2 |
| Hindawi Publishing Group | 3 | 17 |
| Inderscience Enterprises Ltd | 3 | 5 |
| Research field | Publications | Centrality |
| Engineering, Electrical & Electronic | 201 | 0.49 |
| Automation Control Systems | 106 | 0.12 |
| Computer Science | 103 | 0.26 |
| Transportation Science | 64 | 0.09 |
| Robotics | 50 | 0.15 |
| Telecommunications | 26 | 0 |
| Instruments Instrumentation | 19 | 0.01 |
| Oceanography | 17 | 0.38 |
| Physics | 15 | 0.07 |
| Operations Research Management Science | 12 | 0.11 |
| Paper | Year | Times Cited |
| An advancements in the field of autonomous underwater vehicle[46] |
2019 | 453 |
| Line-of-sight path following for Dubins paths with adaptive sideslip compensation of drift forces[65] |
2014 | 453 |
| Research advances and challenges of autonomous and connected ground vehicles[66] |
2019 | 239 |
| A dynamic automated lane change maneuver based on vehicle-to-vehicle communication[62] |
2015 | 225 |
| Integrated path planning and tracking control of an AUV: a unified receding horizon optimization approach[67] |
2014 | 204 |
| Trajectory planning and tracking control for autonomous lane change maneuver based on the cooperative vehicle infrastructure system[68] |
2015 | 196 |
| Trajectory planning and tracking for autonomous overtaking: State-of-the-art and future prospects[59] |
2018 | 176 |
| A fuzzy-logic-based approach for mobile robot path tracking[69] |
2016 | 164 |
| Deep learning-based trajectory planning and control for autonomous ground vehicle parking maneuver[70] |
2022 | 158 |
| Mpc-based cooperative control strategy of path planning and trajectory tracking for intelligent vehicles[71] | 2020 | 127 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
