Submitted:
28 December 2025
Posted:
29 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction/Literature Review
2. Methods and Materials
3. Results and Discussion
3.1. Flow-Regime Transition: Buoyancy to Marangoni Dominance
3.2. Temperature Distribution and Thermal Boundary Layers
3.3. Evaporative Flux Distribution and Mass Transfer
4. Conclusions
Nomenclature
| Surface tension [N/m] | |
| Surface tension at ambient temperature [N/m] | |
| Surface-tension temperature coefficient [N/(mK)] | |
| T | Temperature [K] |
| Ambient temperature [K] | |
| Substrate wall temperature [K] | |
| Inlet velocity [m/s] | |
| Evaporative mass flux [kg/(s)] | |
| Latent heat of vaporization [J/kg] | |
| Mass-transfer coefficient [m/s] | |
| Natural convection heat-transfer coefficient [W/(K)] | |
| Rayleigh number [–] | |
| Nusselt number [–] | |
| Pr | Prandtl number [–] |
| Lewis number [–] | |
| r | Radius [mm] |
| g | Gravitational acceleration [] |
| in | inlet |
| out | outlet |
| w | wall |
| amb | ambient |
References
- Pan, Z.; Weibel, J. A.; Garimella, S. V. Influence of surface wettability on transport mechanisms governing water droplet evaporation. Langmuir 2014, 30(32), 9726–9730. [Google Scholar] [CrossRef]
- Antonov, D. V.; et al. Heating and evaporation of sessile droplets: Simple and advanced models. Langmuir 2024, 40(5), 2656–2663. [Google Scholar] [CrossRef]
- Dong, S.; et al. Inkjet printing synthesis of sandwiched structured ionic liquid–carbon nanotube–graphene film: Toward disposable electrode for sensitive heavy metal detection in environmental water samples. Ind. Eng. Chem. Res. 2017, 56(7), 1696–1703. [Google Scholar] [CrossRef]
- Deegan, R. D.; et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829. [Google Scholar] [CrossRef]
- Sefiane, K. Patterns from drying drops. Adv. Colloid Interface Sci. 2014, 206, 372–381. [Google Scholar] [CrossRef]
- Song, J.; et al. Optimizing coffee ring patterns through enhanced thermal control: Effects of artificial temperature gradients. J. Alloys Compd. 2025, 1039, 183112. [Google Scholar] [CrossRef]
- Marín, Á. G.; Gelderblom, H.; Lohse, D.; Snoeijer, J. H. Rush-hour in evaporating coffee drops. Phys. Fluids 2011, 23, 091111. [Google Scholar] [CrossRef]
- Kumar, M.; Bhardwaj, R. A combined computational and experimental investigation on evaporation of a sessile water droplet on a heated hydrophilic substrate. Int. J. Heat Mass Transfer 2018, 122, 1223–1238. [Google Scholar] [CrossRef]
- Yang, K.; Hong, F.; Cheng, P. A fully coupled numerical simulation of sessile droplet evaporation using arbitrary Lagrangian–Eulerian formulation. Int. J. Heat Mass Transfer 2014, 70, 409–420. [Google Scholar] [CrossRef]
- Kazemi, M. A.; Saber, S.; Elliott, J. A. W.; Nobes, D. S. Marangoni convection in an evaporating water droplet. Int. J. Heat Mass Transfer 2021, 181, 122042. [Google Scholar] [CrossRef]
- Akkus, Y.; Çetin, B.; Dursunkaya, Z. Modeling of evaporation from a sessile constant shape droplet. ASME 2017 15th Int. Conf. Nanochannels, Microchannels, and Minichannels, 2017. [Google Scholar]
- David, S.; Sefiane, K.; Tadrist, L. Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops. Colloids Surf. A 2007, 298, 108–114. [Google Scholar] [CrossRef]
- Barmi, M. R.; Meinhart, C. D. Convective flows in evaporating sessile droplets. J. Phys. Chem. B 2014, 118, 2414–2421. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Luo, J. Marangoni flow in an evaporating water droplet. Appl. Phys. Lett. 2007, 91, 124102. [Google Scholar] [CrossRef]
- Yu, D. I.; et al. Dynamics of contact line depinning during droplet evaporation based on thermodynamics. Langmuir 2015, 31, 1950–1957. [Google Scholar] [CrossRef]
- Larson, R. G. Transport and deposition patterns in drying sessile droplets. AIChE J. 2014, 60, 1538–1571. [Google Scholar] [CrossRef]
- Kim, D.-O.; et al. Deposition of colloidal drops containing ellipsoidal particles: Competition between capillary and hydrodynamic forces. Langmuir 2016, 32, 11899–11906. [Google Scholar] [CrossRef]
- Aboubakri, A.; et al. Computational and experimental investigations on the evaporation of single and multiple elongated droplets. Chem. Eng. J. Adv. 2022, 10, 100255. [Google Scholar] [CrossRef]
- Demirci, E. O.; Akdag, O.; Akkus, Y. Transport mechanisms governing the evaporation of a sessile droplet in its pure vapor environment. 23rd IEEE ITherm, 2024. [Google Scholar]
- Erbil, H. Y. Evaporation of pure liquid sessile and spherical suspended drops: A review. Adv. Colloid Interface Sci. 2012, 170, 67–86. [Google Scholar] [CrossRef]
- Ajaev, V. S. Spreading of thin volatile liquid droplets on uniformly heated surfaces. J. Fluid Mech. 2005, 528, 279–296. [Google Scholar] [CrossRef]
- Semenov, S.; Starov, V. M.; Rubio, R. G.; Velarde, M. G. Computer simulations of evaporation of pinned sessile droplets: Influence of kinetic effects. Langmuir 2012, 28, 15203–15211. [Google Scholar] [CrossRef]
- Brutin, D. Droplet Wetting and Evaporation; Elsevier, 2015. [Google Scholar]
- Picknett, R. G.; Bexon, R. The evaporation of sessile or pendant drops in still air. J. Colloid Interface Sci. 1977, 61, 336–350. [Google Scholar] [CrossRef]
- Nguyen, T. A. H.; Nguyen, A. V. On the lifetime of evaporating sessile droplets. Langmuir 2012, 28, 1924–1930. [Google Scholar] [CrossRef]
- Kang, F.; Shen, Y.; Cheng, Y.; Li, N. Lifetime prediction of sessile droplet evaporation with coupled fields. Ind. Eng. Chem. Res. 2021, 60, 15782–15792. [Google Scholar] [CrossRef]
- Christy, J. R. E.; Hamamoto, Y.; Sefiane, K. Flow transition within an evaporating binary mixture sessile drop. Phys. Rev. Lett. 2011, 106, 205701. [Google Scholar] [CrossRef]
- Rocha, D.; et al. Evaporating sessile droplets: Solutal Marangoni effects overwhelm thermal Marangoni flow. J. Fluid Mech. 2025, 1013, A39. [Google Scholar] [CrossRef]
- Lim, E.; Hung, Y. M. Thermocapillary flow in evaporating thin liquid films with long-wave evolution model. Int. J. Heat Mass Transfer 2014, 73, 849–858. [Google Scholar] [CrossRef]
- Sefiane, K.; Moffat, J. R.; Matar, O. K.; Craster, R. V. Self-excited hydrothermal waves in evaporating sessile drops. Appl. Phys. Lett. 2008, 93, 074103. [Google Scholar] [CrossRef]
- Colinet, P.; et al. Interfacial turbulence in evaporating liquids: Theory and preliminary results of the ITEL-master 9 sounding rocket experiment. Adv. Space Res. 2003, 32, 119–127. [Google Scholar] [CrossRef]
- Hussain, M. A.; Yesudasan, S.; Chacko, S. Nanofluids for solar thermal collection and energy conversion. Preprints preprint article 2020. [Google Scholar]
- Yesudasan, S. The critical diameter for continuous evaporation is between 3 and 4 nm for hydrophilic nanopores. Langmuir 2022, 38(21), 6550–6560. [Google Scholar] [CrossRef]
- Yesudasan, S. Thermal dynamics of heat pipes with sub-critical nanopores; [physics.flu-dyn]; arXiv, 2024. [Google Scholar]
- Mohammed, M. M.; Yesudasan, S. Molecular dynamics study on the properties of liquid water in confined nanopores: Structural, transport, and thermodynamic insights. Proc. ASEE Northeast Section Conf., 2025; pp. 1–7. [Google Scholar]
- Hotchandani, V.; Mathew, B.; Yesudasan, S.; Chacko, S. Thermo-hydraulic characteristics of novel MEMS heat sink. Microsyst. Technol. 2021, 27(1), 145–157. [Google Scholar] [CrossRef]
- Oron, A.; Davis, S. H.; Bankoff, S. G. Long-scale evolution of thin liquid films. Rev. Mod. Phys. 1997, 69, 931–980. [Google Scholar] [CrossRef]
- Tanner, L. H. The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys. 1979, 12, 1473–1484. [Google Scholar] [CrossRef]
- Snoeijer, J. H.; Andreotti, B. A microscopic view on contact angle selection. Phys. Fluids 2008, 20, 057101. [Google Scholar] [CrossRef]
- Huh, C.; Scriven, L. E. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 1971, 35, 85–101. [Google Scholar] [CrossRef]
- Hu, H.; Larson, R. G. Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 2002, 106, 1334–1344. [Google Scholar] [CrossRef]
- Savino, R.; Paterna, D.; Favaloro, N. Buoyancy and Marangoni effects in an evaporating drop. J. Thermophys. Heat Transfer 2002, 16, 562–574. [Google Scholar] [CrossRef]
- Leenaars, A. F. M.; Huethorst, J. A. M.; van Oekel, J. J. Marangoni drying: A new extremely clean drying process. Langmuir 1990, 6, 1701–1703. [Google Scholar] [CrossRef]
- Karpitschka, S.; Liebig, F.; Riegler, H. Marangoni contraction of evaporating sessile droplets of binary mixtures. Langmuir 2017, 33, 4682–4687. [Google Scholar] [CrossRef] [PubMed]













| Name | Expression | Description |
|---|---|---|
| Temperature in °C (Antoine) | ||
| Saturation pressure (mmHg→Pa) | ||
| Saturated vapor density | ||
| Pr | Prandtl number of air | |
| Kinematic viscosity | ||
| Thermal diffusivity | ||
| Rayleigh number | ||
| Nusselt number | ||
| Natural convection coefficient | ||
| Mass-transfer coefficient | ||
| Evaporative mass flux | ||
| Total evaporative mass rate |
| Name | Value | Description |
|---|---|---|
| 8.07131 | Antoine coefficient | |
| 233.426 | Antoine coefficient | |
| Thermal expansivity | ||
| 1005 J/(kg · K) | Air heat capacity | |
| Regularization constant | ||
| g | m/s2 | Gravity |
| Surface-tension coefficient | ||
| W/(m · K) | Air thermal conductivity | |
| 1 | Lewis number | |
| Air viscosity | ||
| m | Inlet radius | |
| m | Outer radius of droplet | |
| 0.4 | Relative humidity | |
| kg/m3 | Air density | |
| J/(kg · K) | Water-vapor gas constant | |
| N/m | Surface tension at ambient temperature | |
| K | Ambient temperature |
| (K) | (s) | ( kg/s) |
|---|---|---|
| 303.15 | 9.1844 | 1.5790 |
| 304.15 | 9.1896 | 1.5799 |
| 305.15 | 9.1948 | 1.5808 |
| 306.15 | 9.2000 | 1.5817 |
| 307.15 | 9.2052 | 1.5826 |
| 308.15 | 9.2104 | 1.5835 |
| 309.15 | 9.2156 | 1.5844 |
| 310.15 | 9.2209 | 1.5853 |
| 311.15 | 9.2261 | 1.5862 |
| 312.15 | 9.2313 | 1.5871 |
| 313.15 | 9.2365 | 1.5880 |
| (K) | (s) | ( kg/s) |
|---|---|---|
| 303.15 | 9.1915 | 2.2679 |
| 304.15 | 9.1971 | 2.2693 |
| 305.15 | 9.2027 | 2.2706 |
| 306.15 | 9.2083 | 2.2720 |
| 307.15 | 9.2139 | 2.2734 |
| 308.15 | 9.2195 | 2.2748 |
| 309.15 | 9.2251 | 2.2762 |
| 310.15 | 9.2308 | 2.2776 |
| 311.15 | 9.2364 | 2.2790 |
| 312.15 | 9.2420 | 2.2804 |
| 313.15 | 9.2476 | 2.2818 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
