Submitted:
26 December 2025
Posted:
29 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Experimental Setup and Results Analysis
3. Theoretical Simulation of OAM Transfer
4. Conclusions
Data availability
Disclosures
Author Contributions
Appendix A. Bloch Equation
Appendix B. Coefficients of Equations (2a)–(2d)
References
- Pan, X.; Yu, S.; Zhou, Y.; Zhang, K.; Zhang, K.; Lv, S.; Li, S.; Wang, W.; Jing, J. Orbital-angular-momentum multiplexed continuous-variable entanglement from four-wave mixing in hot atomic vapor. Phys. Rev. Lett. 2019, 123, 070506. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, W.; Liu, S.; Pan, X.; Du, J.; Lou, Y.; Yu, S.; Lv, S.; Treps, N.; Fabre, C.; Jing, J. Reconfigurable hexapartite entanglement by spatially multiplexed four-wave mixing processes. Phys. Rev. Lett. 2020, 124, 090501. [Google Scholar] [CrossRef]
- Kawasaki, A.; Brunel, H.; Ide, R.; Suzuki, T.; Kashiwazaki, T.; Inoue, A.; Umeki, T.; Yamashima, T.; Sakaguchi, A.; Takase, K.; Endo, M. Real-time observation of picosecond-timescale optical quantum entanglement towards ultrafast quantum information processing. Nat. Photonics 2025, 19, 271. [Google Scholar] [CrossRef]
- Fan, Y.R.; Luo, Y.; Guo, K.; Wu, J.P.; Zeng, H.; Deng, G.W.; Wang, Y.; Song, H.Z.; Wang, Z.; You, L.X.; Guo, G.C. Optimized quantum entanglement network enabled by a state-multiplexing quantum light source. [CrossRef]
- Liu, S.; Lou, Y.; Jing, J. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat. Commun. 2020, 11, 3875. [Google Scholar] [CrossRef]
- Li, S.; Pan, X.; Ren, Y.; Liu, H.; Yu, S.; Jing, J. Deterministic generation of orbital-angular-momentum multiplexed tripartite entanglement. Phys. Rev. Lett. 2020, 124, 083605. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, S.; Lou, Y.; Jing, J. Orbital angular momentum multiplexed quantum dense coding. Phys. Rev. Lett. 2021, 127, 093601. [Google Scholar] [CrossRef]
- Yang, X.; Wang, C.; Wang, J.; Cao, M.; Chen, Y.; Chang, H.; Dong, R.; Zhang, S.; Wei, D.; Zhang, P.; Li, F. Efficient multiplexed quantum memory with high-dimensional orbital angular momentum states in cold atoms. Adv. Photonics 2025, 7, 056010. [Google Scholar] [CrossRef]
- Wen, T.; Gao, S.; Li, W.; Tu, J.; Li, J.; Xiao, Y.; Gao, H.; Chen, Y.; Zhao, J.; Du, C.; Liu, W. Orbital angular momentum mode-multiplexed amplification and transmission based on a ring-core erbium-doped fiber. J. Lightwave Technol. 2023, 41, 2116. [Google Scholar] [CrossRef]
- Gao, X.; Yu, Z.; Yao, J.; Mu, X.; Shi, Y.; Lai, P.; Li, B.; Song, Q. Discontinuous orbital angular momentum metasurface holography. Nat. Commun. 2025, 16, 10688. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Zhang, X.; Zhao, C.; Jin, S.; Jing, J. Multi-way noiseless signal amplification in a symmetrical cascaded four-wave mixing process. Photonics 2022, 9, 229. [Google Scholar] [CrossRef]
- Feng, L.T.; Cheng, Y.J.; Qi, X.Z.; Zhou, Z.Y.; Zhang, M.; Dai, D.X.; Guo, G.C.; Ren, X.F. Entanglement generation using cryogenic integrated four-wave mixing. Optica 2023, 10, 702. [Google Scholar] [CrossRef]
- Zhao, P.; Shekhawat, V.; Girardi, M.; He, Z.; Torres-Company, V.; Andrekson, P.A. Ultra-broadband optical amplification using nonlinear integrated waveguides. In Nature; 2025; pp. 1–6. [Google Scholar]
- Choi, S.-K.; Vasilyev, M.; Kumar, P. Noiseless optical amplification of images. Phys. Rev. Lett. 1999, 83, 1938. [Google Scholar] [CrossRef]
- Kocsis, S.; Xiang, G.Y.; Ralph, T.C.; Pryde, G.J. Heralded noiseless amplification of a photon polarization qubit. Nat. Phys. 2013, 9, 23. [Google Scholar] [CrossRef]
- Li, M.; Yin, P.; Liu, Z.; Dong, F.; Sui, L.; Ma, W.; Wang, T. Enhanced four-wave mixing in borophene-microfiber waveguides at telecom C-band. Appl. Opt. 2022, 61, 1261. [Google Scholar] [CrossRef]
- Sankar Rao, D.G.; Fathima, M.S.; Manjula, P.; Swarnakar, S. Design and optimization of all-optical demultiplexer using photonic crystals for optical computing applications. J. Opt. Commun. 2024, 44, s197. [Google Scholar] [CrossRef]
- O’Brien, J.L.; Pryde, G.J.; White, A.G.; Ralph, T.C.; Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 2003, 426, 264. [Google Scholar] [CrossRef]
- Li, X.; Wu, Y.; Steel, D.; Gammon, D.; Stievater, T.H.; Katzer, D.S.; Park, D.; Piermarocchi, C.; Sham, L.J. An all-optical quantum gate in a semiconductor quantum dot. Science 2003, 301, 809. [Google Scholar] [CrossRef]
- Cogan, D.; Su, Z.E.; Kenneth, O.; Gershoni, D. Deterministic generation of indistinguishable photons in a cluster state. Nat. Photonics 2023, 17, 324. [Google Scholar] [CrossRef]
- Chen, C.; Yan, J.Y.; Babin, H.G.; Wang, J.; Xu, X.; Lin, X.; Yu, Q.; Fang, W.; Liu, R.Z.; Huo, Y.H.; Cai, H. Wavelength-tunable high-fidelity entangled photon sources enabled by dual Stark effects. Nat. Commun. 2024, 15, 5792. [Google Scholar] [CrossRef]
- Liu, W.; Ma, R.; Zeng, L.; Qin, Z.; Su, X. Quantum beam splitter for orbital angular momentum of light: quantum correlation by four-wave mixing operated in a nonamplifying regime. Opt. Lett. 2019, 44, 2053. [Google Scholar] [CrossRef]
- Prajapati, N.; Super, N.; Lanning, N.R.; Dowling, J.P.; Novikova, I. Optical angular momentum manipulations in a four-wave mixing process. Opt. Lett. 2019, 44, 739. [Google Scholar] [CrossRef]
- Ham, B.S.; Shahriar, M.S.; Hemmer, P.R. Enhanced nondegenerate four-wave mixing owing to electromagnetically induced transparency in a spectral hole-burning crystal. Opt. Lett. 1997, 22, 1138. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, X. Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime. Phys. Rev. A 2004, 70, 053818. [Google Scholar] [CrossRef]
- Li, H.C.; Ge, G.Q.; Zubairy, M.S. High-efficiency four-wave mixing beyond pure electromagnetically induced transparency treatment. Opt. Lett. 2019, 44, 3486. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.F.; Wang, T.P.; Chen, C.Y.; Chen, Y.H.; Wang, Y.S.; Chen, Y.F.; Chen, Y.C.; Yu, I.A. Low-loss high-fidelity frequency beam splitter with tunable split ratio based on electromagnetically induced transparency. Phys. Rev. Research 2021, 3, 013096. [Google Scholar] [CrossRef]
- Hamedi, H.R.; Ruseckas, J.; Juzeliūnas, G. Exchange of optical vortices using an electromagnetically induced transparency based four-wave mixing setup. 2018. [Google Scholar] [CrossRef]
- Verma, O.N.; Pandey, R.K.; Yadav, R.R.; Patel, A. Efficient transfer of spatial intensity and phase information of arbitrary modes via four-wave mixing in an atomic vapor. Phys. Rev. A 2022, 106, 053713. [Google Scholar] [CrossRef]
- Thachil, J.A.; Patel, C.R.; Verma, O.N.; Kumar, A. Self-healing of orbital angular momentum in bright twin light beams generated via four-wave mixing. Phys. Rev. A 2024, 110, 053520. [Google Scholar] [CrossRef]
- Qin, Z.; Cao, L.; Wang, H.; Marino, A.M.; Zhang, W.; Jing, J. Experimental generation of multiple quantum correlated beams from hot rubidium vapor. Phys. Rev. Lett. 2014, 113, 023602. [Google Scholar] [CrossRef]
- Li, W.; Li, C.; Niu, M.; Luo, B.; Ahmed, I.; Cai, Y.; Zhang, Y. Three-mode squeezing of simultaneous and ordinal cascaded four-wave mixing processes in rubidium vapor. Ann. Phys. 2021, 533, 2100006. [Google Scholar] [CrossRef]
- Hui, Z.Q.; Zhang, J.G. Design of optical time-division multiplexed systems using the cascaded four-wave mixing in a highly nonlinear photonic crystal fiber for simultaneous time demultiplexing and wavelength multicasting. J. Opt. 2015, 17, 075702. [Google Scholar] [CrossRef]
- Lian, J.-S.; Li, S.-G.; Zhang, Y.-Y.; Liu, Q.; Feng, Z.-K.; Wang, G.-Y. Experimental studies of two sets of four-wave mixing processes in a single-zero-dispersion microstructured fiber by the same pump. Acta Phys. Sin. 2016, 65, 214205. [Google Scholar]
- Hao, X.; Li, J.; Yang, X. Mid-infrared efficient generation by resonant four-wave mixing in a three-coupled-quantum-well nanostructure. Opt. Commun. 2009, 282, 3339. [Google Scholar] [CrossRef]
- Wang, G.; Cen, L.; Qu, Y.; Xue, Y.; Wu, J.H.; Gao, J.Y. Intensity-dependent effects on four-wave mixing based on electromagnetically induced transparency. Opt. Express 2011, 19, 21614. [Google Scholar] [CrossRef]
- Trinh, D.A.; Adwaith, K.V.; Branco, M.; Rouxel, A.; Welinski, S.; Berger, P.; Goldfarb, F.; Bretenaker, F. Modulation transfer protocol for Rydberg RF receivers. Appl. Phys. Lett. 2024, 125, 150501. [Google Scholar] [CrossRef]
- Ficek, Z. Quantum interference in atomic and molecular systems. Mod. Nonlinear Opt. 2001, 119, 79. [Google Scholar]
- Liu, Y.; Xiang, Q.A.; Yang, X.Y.; Yuan, J.B.; Tang, S.Q.; Wang, X.W.; Song, Y.J. Tunable single-photon transport in a multi-mode waveguide via a Λ-type emitter. arXiv 2025, arXiv:2511.22840. [Google Scholar]
- Huss, A.F.; Korsunsky, E.A.; Windholz, L. Phase control of electromagnetically induced transparency in a double-Λ system. J. Mod. Opt. 2002, 49, 141. [Google Scholar] [CrossRef]
- Salah, A.; Thabet, L.E.; El-Shahat, T.M.; El-Wahab, N.A.; Edin, M.G. A double Λ-five-level moving atom interacting with a two-mode field in the presence of damping and nonlinear Kerr medium. Mod. Phys. Lett. A 2022, 37, 2250030. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Bian, M.; Liu, J.; Huang, L.; Zhou, H.; Zhang, J. Multiple phase-matched resonant four-wave mixing processes in a single hot 133Cs vapor cell via a spatially structured two-beam pump. Opt. Continuum 2025, 4, 1092. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Li, M.; Ma, D.; Guo, J.; Zhang, D.; Zhang, Y. Scanning nonreciprocity spatial four-wave mixing process in moving photonic band gap. Laser Phys. 2017, 27, 035402. [Google Scholar] [CrossRef]
- Lin, Z.; Yang, H.; Xu, F.; Qi, Y.; Niu, Y.; Gong, S. Optical nonreciprocity based on the four-wave mixing effect in semiconductor quantum dots. Nanomaterials 2025, 15, 380. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Artoni, M.; La Rocca, G.; Wu, J. Optical unidirectional transport and directional blockade in cold atoms via non-Hermitian four-wave mixing. Photonics 2025, 12, 521. [Google Scholar] [CrossRef]
- Friis, S.M.; Begleris, I.; Jung, Y.; Rottwitt, K.; Petropoulos, P.; Richardson, D.J.; Horak, P.; Parmigiani, F. Inter-modal four-wave mixing study in a two-mode fiber. Opt. Express 2016, 24, 30338. [Google Scholar] [CrossRef]
- Vaity, P.; Banerji, J.; Singh, R.P. Measuring the topological charge of an optical vortex by using a tilted convex lens. Phys. Lett. A 2013, 377, 1154. [Google Scholar] [CrossRef]
- Luo, M.; Zhang, Z.; Shen, D.; Zhao, D. Orbital angular momentum of the vortex beams through a tilted lens. Opt. Commun. 2017, 396, 206. [Google Scholar] [CrossRef]
- Meng, C.; Shui, T.; Yang, W.X. Coherent transfer of optical vortices via backward four-wave mixing in a double-Λ atomic system. Phys. Rev. A 2023, 107, 053712. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
