The determination of the actual series and sequence impedances, including the reduction factor of a certain HV or EHV distribution cable line, as well as the resulting screening factor of its sheaths and surrounding metal installations, including its inductive influence on any of the surrounding metal installations, is not possible by calculations alone. Considering the inductive influence of surrounding metal installations on the values of these quantities is possible only by the method that includes the test measurements during a simulated ground fault in the supplied substation. However, such measurements presuppose putting at least one HV substation and its feeding line out of service. That is why electricity distribution companies rarely allow such measurements, i.e., only immediately before the commissioning of a newly built HV substation or during a periodical overhaul. In this paper, it is demonstrated that these characteristics of cable lines can also be determined based on the results of synchronous measurements performed permanently in the substations at their ends. In this way, the need to perform a simulated ground fault and corresponding test measurements in HV distribution substations is practically disаpear, and the necessary characteristics can be obtained whenever a need for them appears.