Submitted:
22 December 2025
Posted:
24 December 2025
You are already at the latest version
Abstract
In urban corridors, roundabouts often operate in close proximity to signalized intersections, yet the safety implications of their mutual interaction remain insufficiently explored. This study combines field measurements and VISSIM microsimulation with the Surrogate Safety Assessment Model (SSAM) to analyze roundabout–signalized intersection pair under varying outer radii (12–22 m), spacings (40–160 m), signal red times (17–27 s), and traffic distributions. A multiple linear regression model for predicting the total number of conflicts is developed and partially validated using calibrated real-site models for corridors in Osijek and Poreč, Croatia. Small spacings (40 m) increase the total number of conflicts by 40–60% for small roundabouts (R = 12 m) and 20–40% for larger radii compared with isolated operation. Increasing the outer radius from 12 to 17 m reduces conflicts by up to about 90%, while longer red times further lower conflicts, especially for small roundabouts. The final regression model, based on spacing, red time, and outer radius, explains about 80% of the variance in conflicts and shows good agreement with SSAM estimates within its applicability range, providing a practical tool for safety-oriented design of urban roundabout–signalized intersection corridors thereby contributing to the goals of developing a sustainable transport system in complex urban environment.