Submitted:
19 December 2025
Posted:
22 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 24hDR | 24-Hour Dietary Recall |
| AC | Abdominal Circumference |
| AGEs | Advanced Glycation End Products |
| BMI | Body Mass Index |
| CAD | Coronary Artery Disease |
| CML | Carboximetilisina |
| DAC | Doença Arterial Coronária |
| dAGEs | Dietary Advanced Glycation End Products |
| HDL | High-Density Lipoprotein |
| LDL | Low Density Lipoprotein |
| PON-1 | Paraoxonase 1 |
| RI | Insulin Resistance |
| ROS | Reactive Oxygen Species |
| T2DM | Type 2 Diabetes Mellitus |
| TACO | Brazilian Food Composition Table |
| WC | Waist Circumference |
| WHO | World Health Organization |
References
- International Diabetes Federation. IDF Diabetes Atlas, 9th edn; International Diabetes Federation: Brussels. Belgium, 2019. [Google Scholar] [CrossRef]
- Himsworth, H.P. Diabetes mellitus: its differentiation into insulin-sensitive and insulin-insensitive types. 1936. Int J Epidemiol. 2013, 42(6), 1594–8. [Google Scholar] [CrossRef]
- BD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories. 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396(10258), 1204–22. [Google Scholar] [CrossRef]
- Reaven, G.M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988, 37(12), 1595–607. [Google Scholar] [CrossRef]
- Saisho, Y. β-cell dysfunction: Its critical role in prevention and management of type 2 diabetes. World J Diabetes 2015, 6(1), 109–24. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas, 11th edn; International Diabetes Federation: Brussels. Belgium, 2025. [Google Scholar] [CrossRef]
- Abdul-Ghani, M.; DeFronzo, R.A.; Del Prato, S.; Chilton, R.; Singh, R.; Ryder, R.E.J. Cardiovascular Disease and Type 2 Diabetes: Has the Dawn of a New Era Arrived? Diabetes Care 2017, 40(7), 813–20. [Google Scholar] [CrossRef]
- Petrie, JR.; Guzik, TJ.; Touyz, RM. Diabetes. Hypertension. and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms. Can J Cardiol. 2018, 34(5), 575–84. [Google Scholar] [CrossRef]
- Després, JP. Intra-abdominal obesity: an untreated risk factor for Type 2 diabetes and cardiovascular disease. J Endocrinol Invest. 2006, 29(3 Suppl), 77–82. [Google Scholar]
- Rivas-Garcia, L.; Quintana-Navarro, GM.; Alcala-Díaz, JF.; Torres-Peña, JD.; Arenas-de Larriva, AP.; Rangel-Zuñiga, OA.; et al. Association between Diet Quality and Risk of Type 2 Diabetes Mellitus in Patients with Coronary Heart Disease: Findings from the CORDIOPREV Study. Nutrients 2024, 16(8), 1249. [Google Scholar] [CrossRef] [PubMed]
- Evans, JL.; Maddux, BA.; Goldfine, ID. The molecular basis for oxidative stress-induced insulin resistance. Antioxid Redox Signal 2005, 7(7-8), 1040–52. [Google Scholar] [CrossRef] [PubMed]
- Pinto, R.; Machado, U.; Passarelli, M. Advanced Glycation End Products As Biomarkers for Cardiovascular Disease: Browning Clarifying Atherogenesis. Biomarkers in Medicine 2020, 14(8), 611–4. [Google Scholar] [CrossRef] [PubMed]
- Vlassara, H.; Uribarri, J. Advanced glycation end products (AGE) and diabetes: cause. effect. or both? Curr Diab Rep. 2014, 14(1), 453. [Google Scholar] [CrossRef]
- Su X dong. Li S she. Tian Y qiang. Zhang Z yan. Zhang G zhen. Wang L xin. Elevated Serum Levels of Advanced Glycation End Products and their Monocyte Receptors in Patients with Type 2 Diabetes. Archives of Medical Research 2011, 42(7), 596–601. [CrossRef]
- Rabbani, N.; Thornalley, PJ. Protein glycation - biomarkers of metabolic dysfunction and early-stage decline in health in the era of precision medicine. Redox Biol. 2021, 42, 101920. [Google Scholar] [CrossRef]
- Goldberg, T.; Cai, W.; Peppa, M.; Dardaine, V.; Baliga, BS.; Uribarri, J.; et al. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc. 2004, 104(8), 1287–91. [Google Scholar] [CrossRef] [PubMed]
- Uribarri J. Woodruff S. Goodman S. Cai W. Chen X. Pyzik R. et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010, 110(6), 911–916.e12. [CrossRef]
- Htet, MK.; Fahmida, U.; Do, TT.; Dibley, MJ.; Ferguson, E. The Use of Tablet-Based Multiple-Pass 24-Hour Dietary Recall Application (MP24Diet) to Collect Dietary Intake of Children under Two Years Old in the Prospective Cohort Study in Indonesia. Nutrients 2019, 11(12), 2889. [Google Scholar] [CrossRef]
- Universidade Estadual de Campinas. Tabela brasileira de composição de alimentos. In NEPA – UNICAMP, 4. ed. rev. e ampl; NEPA- UNICAMP: Campinas, 2011; 161 p. [Google Scholar]
- James, WP. WHO recognition of the global obesity epidemic. Int J Obes (Lond) 2008, 32 7, S120–6. [Google Scholar] [CrossRef] [PubMed]
- Antolovich, M.; Prenzler, PD.; Patsalides, E.; McDonald, S.; Robards, K. Methods for testing antioxidant activity. Analyst 2002, 127(1), 183–98. [Google Scholar] [CrossRef]
- Gugliucci A. Kotani K. Taing J. Matsuoka Y. Sano Y. Yoshimura M. et al. Short term low calorie diet intervention reduces serum advanced glycation end products in healthy overweight or obese adults. Ann Nutr Metab. 2009, 54(3), 197–201. [CrossRef]
- Koschinsky T. He CJ. Mitsuhashi T. Bucala R. Liu C. Buenting C. et al. Orally absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A 1997, 94(12), 6474–9. [CrossRef]
- Grunwald S. Krause R. Bruch M. Henle T. Brandsch M. Transepithelial flux of early and advanced glycation compounds across Caco-2 cell monolayers and their interaction with intestinal amino acid and peptide transport systems. Br J Nutr. 2006, 95(6), 1221–8. [CrossRef]
- Geissler, S.; Hellwig, M.; Zwarg, M.; Markwardt, F.; Henle, T.; Brandsch, M. Transport of the advanced glycation end products alanylpyrraline and pyrralylalanine by the human proton-coupled peptide transporter hPEPT1. J Agric Food Chem. 2010, 58(4), 2543–7. [Google Scholar] [CrossRef]
- Goudarzi, R.; Sedaghat, M.; Hedayati, M.; Hekmatdoost, A.; Sohrab, G. Low advanced Glycation end product diet improves the central obesity. insulin resistance and inflammatory profiles in Iranian patients with metabolic syndrome: a randomized clinical trial. J Diabetes Metab Disord. 2020, 19(2), 1129–38. [Google Scholar] [CrossRef]
- Silva EBO e. Seara LT e. Silva RCC da. Produtos de glicação avançada e desenvolvimento da aterosclerose. Nutrição Brasil 2016, 15(4), 219–28. [CrossRef]
- Fisberg RM. Marchioni DML. Colucci ACA. [Assessment of food consumption and nutrient intake in clinical practice]. Arq Bras Endocrinol Metabol. julho de 2009;53(5):617–24Kaptchuk TJ. Miller FG. Placebo Effects in Medicine. N Engl J Med. 2015;373(1):8-9. [CrossRef]
- Kaptchuk, TJ.; Kelley, JM.; Conboy, LA.; et al. Components of placebo effect: randomised controlled trial in patients with irritable bowel syndrome. BMJ 2008, 336, 999–1003. [Google Scholar] [CrossRef]
- Munnangi S. Sundjaja JH. Singh K. Dua A. Angus LD. Placebo Effect. Em: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025.
- Uribaari J. Woodruff S. Goodman S. Cai W. Chen X. Pyzik R. et al. Advanced Glycation End Products in Foods and a Practical Guide to Their Reduction in the Diet. J Am Diet Assoc. 2010, 110(6), 911–16.e12. [CrossRef]
- Prasad C. Davis KE. Imrhan V. Juma S. Vijayagopal P. Advanced Glycation End Products and Risks for Chronic Diseases: Intervening Through Lifestyle Modification. Am J Lifestyle Med. 2019, 13(4), 384–404. [CrossRef]
- Dhaliwal, R.; Ewing, SK.; Vashishth, D.; Semba, RD.; Schwartz, AV. Greater Carboxy-Methyl-Lysine Is Associated With Increased Fracture Risk in Type 2 Diabetes. J Bone Miner Res. 2022, 37(2), 265–72. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi S ichi. Role of advanced glycation end products (AGEs) in osteoporosis in diabetes. Curr Drug Targets 2011, 12(14), 2096–102. [CrossRef]
- Moreira, CA.; Barreto, FC.; Dempster, DW. New insights on diabetes and bone metabolism. J bras nefrol 2015, 490–5. [Google Scholar] [CrossRef]
- A. Ahmed K. Muniandy S. S. Ismail I. Role of Nε-(Carboxymethyl)Lysine in the Development of Ischemic Heart Disease in Type 2 Diabetes Mellitus. J Clin Biochem Nutr. 2007, 41(2), 97–105. [CrossRef]
- Hidalgo, FJ.; Zamora, R. Interplay between the maillard reaction and lipid peroxidation in biochemical systems. Ann N Y Acad Sci. 2005, 1043, 319–26. [Google Scholar] [CrossRef]
- Suryawanshi, NP.; Bhutey, AK.; Nagdeote, AN.; Jadhav, AA.; Manoorkar, GS. Study of lipid peroxide and lipid profile in diabetes mellitus. Indian J Clin Biochem. 2006, 21(1), 126–30. [Google Scholar] [CrossRef]
- Goldin, A.; Beckman, JA.; Schmidt, AM.; Creager, MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 2006, 114(6), 597–605. [Google Scholar] [CrossRef]
- Tsekovska, R.; Gatev, E.; Mironova, R.; Kerezieva, S.; Ilieva, S.; Ilieva, T.; et al. Serum Levels of Nε-(Carboxymethyl)-Lysine in Chronic Kidney Disease and Type 2 Diabetes Mellitus. Biomedicines 2025, 13(7), 1672. [Google Scholar] [CrossRef] [PubMed]
- .Han L. Li L. Li B. Zhao D. Li Y. Xu Z. et al. Review of the characteristics of food-derived and endogenous ne-carboxymethyllysine. J Food Prot. 2013, 76(5), 912–8. [CrossRef]
- Detopoulou, P.; Voulgaridou, G.; Seva, V.; Kounetakis, O.; Desli, II.; Tsoumana, D.; et al. Dietary Restriction of Advanced Glycation End-Products (AGEs) in Patients with Diabetes: A Systematic Review of Randomized Controlled Trials. Int J Mol Sci. 2024, 25(21), 11407. [Google Scholar] [CrossRef]
- Linkens, AM.; Houben, AJ.; Niessen, PM.; Wijckmans, NE.; de Goei, EE.; Van den Eynde, MD.; et al. A 4-week high-AGE diet does not impair glucose metabolism and vascular function in obese individuals. JCI Insight 2022, 7(6), e156950. [Google Scholar] [CrossRef] [PubMed]
- Angoorani, S.; Mirmiran, P.; Momenan, A.A.; Azizi, F. Major Dietary Patterns and the Risk of Metabolic Syndrome Components: A Prospective Study in Iranian Adults. Public Health Nutrition 2016, 19(16), 2963–2971. [Google Scholar] [CrossRef]

| Variables | Control group n=17 |
Intervention group n=19 |
|---|---|---|
| Age (years), median IQR | 60 (55-66) | 60 (55-65) |
| Sex n, (%) | ||
| Male | 15 (88) | 16 (84) |
| Female | 2 (12) | 3 (16) |
| Self-reported race n, (%) | ||
| White | 9 (53) | 6 (31) |
| Black | 3 (18) | 5 (26) |
| Brown- skinned | 5 (29) | 8 (42) |
| Nível de escolaridade n, (%) | ||
| Elementary school complete | 1 (6) | 2 (10) |
| High school incomplete | 6 (35) | 5 (26) |
| High school complete | 5 (29) | 6 (31) |
| Higher education incomplete | 1 (6) | 5 (26) |
| Higher education complete | 4 (23) | 1(5) |
| Average income n, (%) | ||
| 1 minimum wage | 4 (23) | 2 (10) |
| 2 minimum wages | 11 (65) | 14 (74) |
| 3 minimum wages | 2 (12) | 3 (16) |
| Associated comorbidities n, (%) | ||
| Arterial hypertension | 17 (100) | 19 (100) |
| Dyslipidemia | 17 (100) | 19(100) |
| Medications in use n, (%) | ||
| Hypoglycemic agents | 17 (100) | 19 (100) |
| Diuretics | 17 (100) | 19 (100) |
| ACE inhibitors | 9 (53) | 11 (58) |
| Beta blockers | 15 (88) | 8 (42) |
| Variables | Control group n=17 | Intervention group n=19 | ||||
|---|---|---|---|---|---|---|
| Pre | Post | p | Pre | Post | p | |
| Carbohydrates (g) | 219 (142-489) | 214 (170-511) | 0.206 | 238 (108-448) | 195 (21-819) | 0.650 |
| Proteins (g) | 86 (41-200) | 66 (37-297) | 0.012* | 91 (50-160) | 74 (45-191) | 0.044* |
| Lipids (g) | 66 (34-197) | 58 (22-210) | 0.023* | 64 (35-120) | 52 (16-78) | 0.003* |
| Fibers(g) | 23 (8-31) | 20 (3-55) | 0.781 | 18 (8-60) | 22 (11-56) | 0.031* |
| Free carbohydrates (g) | 207 (123-461) | 196 (142-457) | 0.306 | 209 (99-411) | 211 (111-353) | 0.515 |
| Monounsaturated FA (g) | 21 (8-52) | 16 (2-79) | 0.006* | 20 (11-53) | 15 (4-27) | 0.003* |
| Polyunsaturated FA (g) | 12 (4-41) | 7 (1-27) | 0.547 | 11 (4-21) | 7 (2-11) | 0.002* |
| Saturated FA (g) | 20 (14-74) | 19 (4-87) | 0.039* | 22 (13-37) | 17 (4-34) | 0.005* |
| Trans FA (g) | 1.10 (0.40-10) | 0.80 (0.20-38) | 0.794 | 1.17 (0.40-9.57) | 0.73 (0.07-6.20) | 0.006* |
| Cholesterol (mg) | 412 (178-971) | 274 (20-1244) | 0.120 | 293 (168-678) | 200 (45-514) | <0.001* |
| Calories (kcal) | 1910 (1245-4427) | 1802 (1076-4747) | 0.071 | 1857 (1185-3128) | 1656 (1043-2383) | 0.079 |
| Water (L) | 0.92 (0-2.50) | 1 (0-2.50 | 0.838 | 1.33 (0.70-2.51) | 1.60 (0.92-2.50) | 0.163 |
| dGEs (kU) | 13196 (3297-40296) | 11696 (1190-49296 | 0.890 | 15317 (4471-39967) | 6769 (3246-15476) | <0.001* |
| Control group (n=17) | Intervention group (n=19) | |||||
|---|---|---|---|---|---|---|
| Variables | Pre | Post | p | Pre | Post | p |
| Metabolic age (years) | 65 (40-81) | 59 (40-81) | 0.246 | 61 (41-80) | 63 (41-80) | 0.888 |
| Weight (kg) | 79 (61-109) | 78 (61-111) | 0.200 | 80 (65-104) | 81 (65-103) | 0.140 |
| BMI (kg/m²) | 29 (24 -37) | 29 (23-37) | 0.362 | 28 (24-37) | 28 (24-37) | 0.168 |
| Body fat (%) | 28 (17-43) | 26 (17-41) | 0.345 | 30 (13-41) | 30 (20-41) | 0.571 |
| Visceral fat (Índice) | 14 (8-22) | 14 (8-21) | 0.269 | 13 (7-22) | 13 (9-22) | 0.259 |
| Muscle mass (%) | 67 (54-75) | 68 (56-75) | 0.063 | 66 (56-83) | 66 (56-76) | 0.513 |
| Bone mass (kg) | 2.90 (2-3) | 2.90 (2-4) | 0.104 | 3.00 (2-3) | 2.90 (2-3) | 0.031* |
| Body water (%) | 51 (41-59) | 53 (43-59) | 0.139 | 50 (43-65) | 50 (43-57) | 0.652 |
| WC (cm) | 101 (81-126) | 101 (81-126) | 0.650 | 98 (86-115) | 99 (85-115) | 0.776 |
| AC (cm) | 102 (91-115) | 102 (92-116) | 0.364 | 99 (88-121) | 102 (89-121) | 0.569 |
| Variables | Control group (n=17) | Intervention group (n=19) | ||||
|---|---|---|---|---|---|---|
| Pre | Post | p | Pre | Post | p | |
| HDL diameter (nm) | 9.06 (8.26-9.63) | 9.08 (8.55-9.76) | 0.677 | 8.78 (8.44-9.42) | 8.89 (7.78-9.73) | 0.095 |
| PON1 (U/L) | 86.37 (20.61-149.68) | 84.06 (28.57-135.21) | 0.093 | 39 (13-121) | 39 (13-134) | 0.552 |
| Tbars (umol/mg) | 1.65 (1.24-2.20) | 1.56 (0.53-2.15) | 0.430 | 1.71 (1.09-2.24) | 1.75 (1.09-2.35) | 0.708 |
| Esterified cholesterol (mg/dL) | 1.30 (0.79-2.73) | 1.29 (0.82-2.45) | 0.148 | 1.27 (0.59-2.49) | 0.99 (0.73-2.41) | 0.076 |
| Unesterified cholesterol (mg/dL) | 2.48 (1.69-4.15) | 2.52 (1.62-3.89) | 0.331 | 2.21 (1.30-3.78) | 1.91 (1.50-3.19) | 0.153 |
| CML (µg/g) | 2.45 (0.35-3.19) | 2.33 (0.52-4.21) | 0.352 | 2.90 (0.87-5.79) | 2.03 (1.22-4.99) | 0.015* |
| CML bsa (µg/g) | 0.05 (0.01-0.07) | 0.05 (0.01-0.09) | 0.328 | 0.06 (0.02-0.13) | 0.05 (0.03-0.11) | 0.015* |
| Total cholesterol (mg/dL) | 142 (93-315) | 148 (96-271) | 0.836 | 140 (96-213) | 136 (96-203) | 0.297 |
| HDL (mg/dL) | 36 (22-59) | 37 (24-54) | 0.829 | 33 (24-49) | 34 (24-44) | 0.095 |
| LDL(mg/dL) | 82 (36-229) | 84 (35-191) | 0.962 | 69 (23-130) | 72 (23-126) | 0.704 |
| Non-HDL (mg/dL) | 104 (57-278) | 111 (61-218) | 0.876 | 99 (70-180) | 95 (72-173) | 0.331 |
| Triglycerides (mg/dL) | 110 (44-497) | 116 (71-404) | 0.722 | 111 (57-331) | 130 (93-525) | 0.868 |
| Glucose (mg/dL) | 127 (87-222) | 118 (43-238) | 0.452 | 130 (101-235) | 127 (95-200) | 0.079 |
| Creatinine (mg/dL) | 0.90 (0.71-1.42) | 0.92 (0.66-1.29) | 0.635 | 0.95 (0.73-1.23) | 0.98 (0.65-1.34) | 0.448 |
| Fructosamine (µmol/L) | 288 (233-399) | 276 (238-391) | 0.420 | 286 (238-418) | 298 (238-446) | 0.652 |
| C-Peptide (ng/mL) | 2.64 (1.55-8.25) | 3.31 (1.59-8.87) | 0.981 | 3.44 (2.07-13.40) | 3.20 (2-6.24) | 0.145 |
| Insulin (UI/mL) | 11 (6-64) | 12 (6-67) | 1.000 | 15 (5-145) | 13 (6-40) | 0.078 |
| Variables correlated with CML | Control group (n=17) |
Intervention group (n=19) |
||
|---|---|---|---|---|
| R | p | R | p | |
| HDL diameter (nm) | -0.01 | 0.986 | 0.11 | 0.491 |
| PON1 (U/L) | -0.01 | 0.932 | 0.22 | 0.241 |
| Tbars (umol/mg) | 0.09 | 0.581 | 0.33 | 0.045* |
| Esterified cholesterol (mg/dL) | 0.02 | 0.886 | 0.29 | 0.082 |
| Unesterified cholesterol (mg/dL) | 0.05 | 0.760 | 0.23 | 0.171 |
| Total cholesterol (mg/dL) | -0.17 | 0.328 | 0.10 | 0.524 |
| HDL (mg/dL) | -0.06 | 0.728 | 0.27 | 0.106 |
| LDL(mg/dL) | -0.17 | 0.327 | 0.16 | 0.324 |
| Non-HDL (mg/dL) | -0.18 | 0.277 | 0.05 | 0.737 |
| Triglycerides (mg/dL) | -0.11 | 0.506 | -0.15 | 0.371 |
| Glucose (mg/dL) | -0.32 | 0.060 | 0.08 | 0.605 |
| Creatinine (mg/dL) | 0.25 | 0.134 | 0.13 | 0.420 |
| Fructosamine (µmol/L) | -0.16 | 0.354 | 0.10 | 0.539 |
| C-Peptide (ng/mL) | 0.09 | 0.606 | -0.01 | 0.966 |
| Insulin (UI/mL) | 0.11 | 0.531 | 0.04 | 0.809 |
| Variables correlated with CML | R | p |
|---|---|---|
| Metabolic age (years) | -0.09 | 0.589 |
| Weight (kg) | 0.08 | 0.636 |
| BMI (kg/m²) | 0.01 | 0.508 |
| Body fat (%) | -0.01 | 0.438 |
| Visceral fat (Índice) | -0.17 | 0.313 |
| Muscle mass (%) | 0.19 | 0.250 |
| Bone mass (kg) | 0.06 | 0.688 |
| Body water (%) | 0.35 | 0.031* |
| WC (cm) | -0.02 | 0.865 |
| AC (cm) | -0.09 | 0.564 |
| Carbohydrates (g) | 0.07 | 0.649 |
| Proteins (g) | 0.10 | 0.523 |
| Lipids (g) | 0.13 | 0.429 |
| Fibers(g) | 0.10 | 0.549 |
| Free carbohydrates (g) | -0.17 | 0.294 |
| Monounsaturated FA (g) | 0.12 | 0.482 |
| Polyunsaturated FA (g) | 0.02 | 0.187 |
| Saturated FA (g) | 0.04 | 0.794 |
| Trans FA (g) | 0.28 | 0.089 |
| Cholesterol (mg) | -0.01 | 0.482 |
| Calories (kcal) | -0.01 | 0.963 |
| Water (L) | 0.09 | 0.543 |
| dGEs (kU) | 0.52 | <0.01* |
| Variables correlated with CML | R | p |
|---|---|---|
| HDL diameter (nm) | -0.08 | 0.608 |
| PON1 (U/L) | 0.04 | 0.809 |
| Tbars (umol/mg) | -0.03 | 0.820 |
| Esterified cholesterol (mg/dL) | -0.23 | 0.163 |
| Unesterified cholesterol (mg/dL) | -0.15 | 0.355 |
| Total cholesterol (mg/dL) | -0.36 | 0.030* |
| HDL (mg/dL) | -0.02 | 0.901 |
| LDL(mg/dL) | -0.38 | 0.020* |
| Non-HDL (mg/dL) | -0.37 | 0.026* |
| Triglycerides (mg/dL) | -0.24 | 0.141 |
| Glucose (mg/dL) | -0.33 | 0.049* |
| Creatinine (mg/dL) | -0.04 | 0.801 |
| Fructosamine (µmol/L) | -0.08 | 0.628 |
| C-Peptide (ng/mL) | 0.08 | 0.614 |
| Insulin (UI/mL) | 0.08 | 0.614 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
