Growing concerns over greenhouse gas (GHG) emissions have positioned hydrogen fuel cell buses (HFCBs) as a promising alternative for sustainable urban mobility. By elimi-nating tailpipe emissions and enabling significant reductions in well-to-wheel GHG in-tensities when hydrogen is sourced from renewables, HFCBs can contribute to im-proved urban air quality, energy diversification, and alignment with climate goals. De-spite these benefits, large-scale adoption faces challenges related to production costs, hy-drogen infra-structure, and efficiency improvements across the supply chain. Life Cycle Assessment (LCA) provides a valuable framework to assess these trade-offs holistically, capturing en-vironmental, economic, and social dimensions of HFCB deployment. How-ever, incon-sistencies in system boundaries, functional units, and impact categories high-light the need for more standardized and comprehensive methodologies. This paper ex-amines the potential of hydrogen buses by synthesizing evidence from peer-reviewed studies and identifying opportunities for integration into urban fleets. Findings suggest that when combined with robust LCA approaches, hydrogen buses offer a pathway to-ward decar-bonized, cleaner, and more resilient public transport systems. Strategic adop-tion could not only enhance environmental performance but also foster innovation, infra-structure de-velopment, and long-term economic viability, positioning HFCBs as a corner-stone of sus-tainable urban transportation transitions.