Submitted:
17 December 2025
Posted:
18 December 2025
You are already at the latest version
Abstract
Altogether 16 pigs-derived Escherichia coli (isolated pig farms in Vojvodina region, Serbia) were taxonomically identified using MALDI-TOF mass spectrometry; 14 (87.5%) with secure genus identification/probable species identification and two with highly probable genus identification. Testing virulence factor genes, the gene fimA was detected in 62.5% of strains. Crl gene was detected in 14 strains (87.5 %). Ec3419/2 contained 5 analyzed genes. Using Congo red agar, five E. coli were biofilm-forming which was not confirmed using the quantitative plate assay. The strains were mostly multiresistnt to antibiotics. Each E. coli was found with production of non-useful enzymes in values from 5 up to 30 nmol. However, they were susceptible to herbal essential oils (HEO-oregano, thyme, sage, and coriander) with average inhibitory zone from 15 up to 27 mm in diameter. Tey were also (6) susceptible to postbiotic substance (Ent) 412 (activity up to 6400 AU/ml. Postbiotic substances represent one of novel approaches to fight with virulence factor possessing E. coli. Moreover, their combination with HEO increases their antimicrobial effect. These treatment conditions correspond with One Health Concept.
Keywords:
1. Introduction
2. Materials and Methods
2.1. Taxonomical Identification of Isolates
2.2. Virulence Factor Genes Detection of Pig-Derived Escherichia coli
2.3. Biofilm-Forming Ability Testing
2.4. Antibiotic Disc Diffusion Test and Enzyme Activity Detection
2.5. Susceptibility to Herbal Essential Oils of E. coli
2.6. Postbiotic Substance (Enterocin-like) 412 Preparation and Susceptibility to PS 412 of Pig-Derived E. coli
3. Results
3.1. Strains Taxonomy Using MALDI-TOF Mass Spectrometry, Virulence Factor Genes and Biofilm-Forming Ability of Escherichia coli
3.3. Antibiotic Disc Diffusion Test and Enzyme Activity Detection
3.4. Susceptibility to Herbal Essential Oils and Postbiotic Substance of E. coli
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karahutová, L.; Mandelík, R.; Bujňáková, D. Antibiotic resistant and biofilm-associated Escherichia coli isolates from diarrheic and healthy dogs. Microorganisms 2021, 9, 1334. [Google Scholar] [CrossRef]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 2019, 8, 76. [Google Scholar] [CrossRef] [PubMed]
- Nowrouzian, F.; Adleberth, I.; World, A.E. P fimbriae, capsule and aerobactin characterize colonic resident Escherichia coli. Epidemiol. Infect. 2001, 126, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, L.J.; Ribeiro, L.F.; Lavezzo, L.F.; Barbosa, M.M.C.; Rossi, G.A.M.; do Amaral, L.A. Detection of pathogenic Escherichia coli and microbiological quality of chilled shrimp sold in street. Lett. Appl. Microbiol. 2016, 62, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Rose, M. Intestinal infections caused by Escherichia coli. J. Probiot. Health 2022, 10, 300. [Google Scholar]
- Maurer, J.J.; Brown, T.P.; Steffans, W.L.; Thayer, S.G. The occurrence of ambient temperature-regulated adhesins, curli, and the temperature-sensitive hemagglutinin Tsh among avian Escherichia coli. Avian Dis. 1998, 42, 106–118. [Google Scholar] [CrossRef]
- Qingguo, L.; Jiaqing, Z.; Na, L.; Wenjun, S.; Bin, Y.; Huanqing, N.; Dong, L.; Pingkai, Q.; Hanjie, Y.; Yong, Ch.; Gulin, Z.; Tianpeng, Ch. Type I fimbriae subunit fimA enhances Escherichia coli biofilm formation but affects L-threonine carbon distribution. Front. Bioeng. Biotechnol. 2022, 10, 904636. [Google Scholar] [CrossRef]
- Čurová, K.; Kmeťová, M.; Vargová, R.; Lovayová, V.; Siegfried, L. Toxins of extraintestinal Escherichia coli isolated from blood culture. Clin. Microbiol. 2014, 3, 5. [Google Scholar] [CrossRef]
- Chikindas, M.L.; Sichel, L.S.; Popov, I.V.; Tagg, J.R.; Lu, X.; Mitrokhin, O.V.; Todorov, S.D. Postbiotics: what are they? Ben. Microbes 2025, 1–8. [Google Scholar]
- Lauková, A.; Bino, E.; Zábolyová, N.; Maďar, M.; Pogány Simonová, M. The strains Enterococcus faecalis as contaminants of raw goat milk and their treatment with postbiotic active substances produced by autochthonous lactococci. Processes 2025, 13, 3552. [Google Scholar] [CrossRef]
- Pogány Simonová, M.; Lauková, A.; Chrastinová, Ľ.; Kandričáková, A.; Ščerbová, J.; Strompfová, V.; Miltko, R.; Belzecki, G. Enterocins as novel feed additives in rabbit diet: Enterocin M and Durancin Ent ED26E/7, their combination, and effects on microbiota, caecal fermentation, and enzymatic activity. Prob. Antimicrob. Prot. 2021, 13, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Lauková, A.; Micenková, L.; Kubašová, I.; Bino, E.; Kandričáková, A.; Plachá, I.; Štrkolcová, G.; Gálik, B.; Kováčik, A.; Halo, M.; Pogány Simonová, M. Microbiota, phagocytic activity, biochemical parameters and parasite control in horses with application of autochthonous, bacteriocin-producing, probiotic strain Enterococcus faecium EF412. Prob. Antimicrob. Prot. 2023, 15, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Lauková, A.; Simonová, M.; Strompfová, V.; Štyriak, I.; Ouwehand, A.C.; Várady, M. Potential of enterococci isolated from horses. Anaerobe 2008, 14, 234–236. [Google Scholar] [CrossRef] [PubMed]
- Fabian, D.; Sabol, M.; Domaracká, K.; Bujňáková, D. Essential oils-their antimicrobial activity against Escherichia coli and effect on intestinal cell viability. Toxicol. in vitro 2006, 1435–1445. [Google Scholar] [CrossRef]
- Bukovská, A.; Číkoš, Š.; Juhás, Š.; Iľková, G.; Rehák, P.; Koppel, J. Effects of a combination of thyme and oregano essential oils on TNBS-Induced colitis in mice. Med. Inflam. 2007, 23296, 9 pages. [Google Scholar] [CrossRef]
- Shyamapada, M.; Manisha, M. Coriander (Coriandrum sativum L.) essential oil:Chemistry and biological activity. Asian Pac. J. Trop. Biomed. 2015, 5, 421–428. Available online: http://creativecommons.org/license/by-nc-nd/4/0/.
- Rodrigues, M.R.; Krause, L.C.; Caramao, E.B.; dos Santos, J.G.; Dariva, C.; de Oliveira, J.V. Chemical composition and extraction yield of the extract of Origanum vulgare obtained from sub-and supercritical CO2. J. Agri. Food Chem. 2004, 52, 3042–3047. [Google Scholar] [CrossRef]
- Szabóová, R.; Lauková, A.; Herich, R.; Tarabová, L.; Chrastinová, Ľ.; Faixová, Z.; Makoová, Z.; Piešová, E. The effect of dietary supplementation of sage plant extract and Enterocin M on the mucus in the small intestine and caecum of rabbits. Polish J. Vet. Sci. 2021, 24, 23–28. [Google Scholar] [CrossRef]
- Stojanov, I.; Prodanov-Radulovič, J.; Lauková, A.; Grešáková, Ľ.; Petrovič, J.; Ratajac, R.; Pušič, I. Clinical isolates of E. coli in pigs- antimicrobial resistance and perspectives to optimize antibiotic administration. Arhiv Vet. Med. 2020, 13, 17–27. [Google Scholar] [CrossRef]
- Lauková, A.; Kubašová, I.; Kandričáková, A.; Strompfová, V.; Žitňan, R.; Pogány Simonová, M. Relation to enterocins of variable Aeromonas species isolated from trout of Slovakian aquatic sources detected by MALDI-TOF mass spectrometry. Folia Microbiol. 2018, 63, 749–755. [Google Scholar] [CrossRef]
- Lauková, A.; Kandričáková, A.; Ščerbová, J.; Pogány Simonová, M.; Žitňan, R. Gram-negative microbiota derived from trout fished in Slovakian water sources and their relationship to postbiotics. Pathogens 2025, 14, 644. [Google Scholar] [CrossRef] [PubMed]
- Umer, A.A. review on MALDI TOF MS: Modern disease diagnosis approaches in microbiology and its mechanisms. J. Microbiol. Mod. Tech. 2023, 7, 102. [Google Scholar]
- Bruker Daltonics.Maldi Biotyper CA system; Software for Microorganisms Identification and Classification User Manual; Bruker Daltonics, Inc.:Billerica, MA, USA, 2008.
- Yamamoto, S.; Terai, A.; Yuri, K.; Kurazano, H.; Takeda, Y.; Yoshida, O. Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol. Med. Microbiol. 1995, 12, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Donnenberg, M.S.; Yu, J.; Kaper, J.D. A second chromosomal gene necessary for intimate attachment of enteropathogenic Escherichia coli to epithelial cells. J. Bacterial 1993, 175, 4670–4680. [Google Scholar] [CrossRef]
- Kenny, B.; Lai, L.C.; Finlay, B.B.; Donnenberg, M.S. EspA, a protein secreted by enteropathogenic Escherichia coli is required to include signals in epithelial cells. Mol. Microbiol. 1996, 20, 313–323. [Google Scholar] [CrossRef]
- Freeman, D.J.; Falkiner, F.R.; Keane, C.T. New method for detecting slime production by coagulase-negative staphylococci. J. Clin. Pathol. 1989, 42, 872–874. [Google Scholar] [CrossRef]
- Bino, E.; Kandričáková, A.; Lauková, A. Biofilm formation in coagulase-negative staphylococci from various animals. Eur. J. Appl. Sci. 2024, 12, 317–323. [Google Scholar] [CrossRef]
- Chaieb, K.; Chehab, O.; Zmantar, T.; Rouabhia, M.; Mahdouani, K.; Bakrouf, A. In vitro effect of pH and ethanol on biofilm formation by clinically -postive Staphylococcus epidermidis strains. Ann. Microbiol. 2007, 57, 431–437. [Google Scholar] [CrossRef]
- Lauková, A.; Focková, V.; Maďar, M.; Miltko, R.; Pogány Simonová, M. Susceptibility to postbiotic substances-Enterocins of the strains Enterococcus thailandicus from beavers (Castor fiber). Pathogens 2025, 14, 269. [Google Scholar] [CrossRef]
- Lewis, J.S.; Weinstein, M.P.; Bobenchik, A.M.; Campeu, S.K.; Cullen, S.K.; Galas, M.F.; Gold, H.; Humphries, R.M.; Kirn, T.J.; Limbago, B.; et al. Clinical and Laboratory Standards Institute (CLSI); Performance Standards for Antimicrobial Susceptibility testing. In Clinical and Laboratory Institute, 32nd ed.; Pitsburgh, PA, USA, 2022; ISBN 978-1-68440-135-2i. [Google Scholar]
- Lauková, A.; Styková, E.; Focková, V.; Trosianczyk, A.; Maďar, M. Int. J. Equine Sci. 2024, 3, 51–57. Available online: https://rasayely-journlas.com/index.php/ijes. [CrossRef]
- De Vuyst, L.; Callewaert, R.; Pot, B. Characterization of antagonistic activity of Lactobacillus amylovorus DCE471 and large scale isolation of its bacteriocin amylovorin L471. Syst. Appl. Microbiol. 1996, 19, 9–20. [Google Scholar] [CrossRef]
- Mareková, M.; Lauková, A.; Skaugen, M.; Nes, I. Isolation and characterization of a new bacteriocin termed enterocin M, produced by environmental isolate Enterococcus faecium AL41. J. Ind. Microbiol. Biotechnol. 2007, 34, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Ščerbová, J.; Lauková, A. Escherichia coli strains from ostriches and their sensitivity to antimicrobial substances. Polish J.Vet. Sci. 2016, 19, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Roderová, M; Halová, D.; Papousek, I.; Dolejská, M.; Mararikova, M.; Hanulíik, V.; Pudová, V.; Broz, P.; Htoutou-Sedláková, M.; Sauer, P.; Bardon, J.; Cizek, A.; Kolar, M.; Lietrák, I. Characteristics of quinolone resistance in Escherichia coli isolates from humans, animals, and the environment in the Czech Republic. Front. Microbiol. 2017, 7, 2147. [Google Scholar] [CrossRef]
- Kmeť, V.; Bujňáková, D. Antimicrobial resistance Escherichia coli isolated from calves. J.Microbiol. Biotechnol. Food Sci. 2018, 7, 412–415. [Google Scholar] [CrossRef]
- Bírošová, E.; Siegfried, L.; Kmeťová, M.; Makara, A.; Ostró, A.; gresová, A.; Urdzík, P.; Liptáková, A.; Molokácsová, M.; Bártl, R.; Valanský, L. Detection of virulence factors in α-hemolytic Escherichia coli strains isolated from various clinical materials. Clin. Microbiol. Infect. 2004, 10, 569–573. [Google Scholar] [CrossRef]
- Kerluku, M.; Manoska- Ratkova, M; Prodanov, M.; Sojanowska-Dimzoska, B.; Hajrulai-Musliu, Z.; Jankuloski, D.; Blagoevska, K. Phenotypic and Genotypic analysis of Antimicrobial resistance of commensal Escherichia coli from dairy cow feces. Processes 2023, 11, 1929. [Google Scholar] [CrossRef]
- Hu, S.; Ding, Q.; Zhang, W.; Kang, M.; Ma, J.; Zhao, L. Gut microbial β-glucuronidase: a vital regulator in female estrogen. Gut Microbes 2023, 15, 2236749. [Google Scholar] [CrossRef]
- Field, D.; Baghou, I.; Marea, M.C.; Gardiner, G.E.; Ross, R.P.; Hill, C. Nisin in combination with cinnamaldehyde and EDTA to control growth of Escherichia coli strains of swine origin. Antibiotics 2017, 6, 35. [Google Scholar] [CrossRef]
- Pogány Simonová, M.; Chrastinová, Ľ.; Ščerbová, J.; Tokarčíková, K.; Grešáková, Ľ.; Žitňan, R.; Plachá, I.; Lauková, A. Front Vet. Sci. 2025, 12, 1660371. [CrossRef]
- Petrová, M.; Hurníková, Z.; Lauková, A.; Dvorožňáková, E. Antiparasitic activity of Enterocin M and Durancin -like from beneficial enterococci in mice experimentally infected with Trichinella spiralis. Microorganisms 2024, 12, 923. [Google Scholar] [CrossRef]
- Al Ataya, A.K.; Abriouel, H.; Kempf, I.; Jouy, E.; Auclair, E.; Vacheé, A.; Drider, D. Effects of colistin and bacteriocins combinations on the in vitro growth of Escherichia coli strains from swine origin. Prob. Antimicrob. Prot. 2016, 8, 183–190. [Google Scholar] [CrossRef]
| Gene | Oligonucleotide primer pairs | Size of PCR product (bp) | Reference |
|---|---|---|---|
| crl (curli regulatory gene), M571, M570 | F:5-TTTCGATTGTCTGGCTGTATG-3 |
250 | [6] |
| R:5-CTTCAGATTCAGCGTCGTC-3 | |||
|
eaeA (outer membrane protein-intimin, non-fimbrial adhesin), eaeA 1, eaeA 2 |
F:5-CTGAACGGCGATTACGCGAA-3 |
917 | [25] |
| R:5-CCAGACGATACGATCCAG-3 | |||
| espA (protein secreted by enteropathogenic E. coli), espA1, espA2 | |||
| F:5-GCGAGTACTTCGACATC-3 |
579 | [26] | |
| R:5-TTATTTACCAAGGGATAT-3 | |||
| hlyA (α-hemolysin), hly1, hly2 | F:5-GTCTGCAAAGCAATCCGCTGCAAATAAA-3 |
1177 | [24] |
| R:5-CTGTGTCCACGAGTTGGTTGATTAG-3 | |||
| fimA (fimbrial adhesin), fimA 1, fimA 2 | F:5-ACGTTTCTGTGGCTCGACGCATCT-3 R:5-ACGTCCCTGAACCTGGGTAGGTTA-3 |
721 | [3] |
| Strain | MALDI-TOF | fimA | crl | hlyA | eaeA | espA | Congo/72 h | Biofilm ± SD |
|---|---|---|---|---|---|---|---|---|
| Ec3298/1 | 2.067 | + | + | + | + | - | - | 0.011 ± 0.009 |
| Ec3298/2 | 2.127 | - | + | - | + | + | ± | 0.006 ± 0.002 |
| Ec3298/3 | 2.209 | - | + | - | + | + | - | 0.005 ± 0.003 |
| Ec3298/4 | 1.897 | + | + | - | - | - | + | 0.050 ± 0.01 |
| Ec3098/1 | 2.081 | + | + | + | - | - | + | 0.007 ± 0.003 |
| Ec3098/2 | 2.265 | - | + | - | + | + | - | - |
| Ec3152 | 2.135 | + | + | + | - | - | - | - |
| Ec3276 | 2.222 | + | + | + | - | - | - | 0.027 ± 0.02 |
| Ec3419/1 | 2.238 | + | + | - | - | - | - | - |
| Ec3419/2 | 2.197 | + | + | + | + | + | ± | 0.013 ± 0.004 |
| Ec3419/3 | 1.988 | + | + | - | - | - | ± | 0.025 ± 0.004 |
| Ec3419/4 | 2.216 | - | + | - | - | - | - | 0.013 ± 0.003 |
| Ec3419/6 | 2.213 | + | + | - | - | - | + | 0.018 ± 0.005 |
| Ec3717/1 | 2.016 | + | + | - | - | + | + | 0.015 ± 0.006 |
| Ec7676/4 | 2.060 | - | - | - | - | - | + | 0.048 ± 0.012 |
| Ec3477/1 | 2.204 | - | - | - | - | - | - | 0.039 ± 0.014 |
| Strain | C30 | T30 | Amp10 | CM10 | E15 | AZM15 | AK30 | Mez75 | Tic75 | Car100 | Prl100 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Ec3298/1 | R | R | R | +14 | R | R | +12 | R | R | R | +10 |
| Ec3298/2 | +22 | R | R | +12 | R | +11 | +10 | R | R | R | +11 |
| Ec3298/3 | +20 | R | R | +11 | R | +10 | +10 | R | R | R | +10 |
| Ec3298/4 | R | R | R | R | R | +10 | +11 | R | R | R | R |
| Ec3098/1 | +20 | R | R | +11 | R | R | +12 | R | R | R | +13 |
| Ec3098/2 | R | R | R | R | R | R | +12 | R | R | R | R |
| Ec3152 | +20 | R | R | +11 | R | +10 | +10 | R | R | R | +10 |
| Ec3276 | R | +12 | R | +11 | +13 | +10 | +11 | +10 | +10 | R | +10 |
| Ec3419/1 | R | R | +15 | R | R | +9 | +10 | +15 | +15 | R | +9 |
| Ec3419/2 | R | R | R | +10 | R | R | +10 | R | R | R | +12 |
| Ec3419/3 | +23 | +17 | R | +11 | R | +10 | +10 | R | R | R | R |
| Ec3419/4 | R | R | +15 | R | R | R | +10 | +13 | +14 | R | +16 |
| Ec3419/6 | R | R | R | R | R | +10 | +13 | +15 | +15 | +10 | +20 |
| Ec7162/2 | R | +8 | +17 | R | R | +8 | +10 | +10 | +11 | R | +17 |
| Ec7612/4 | R | R | +12 | R | R | R | +10 | +10 | +10 | R | +10 |
| Ec3477/1 | R | R | R | R | R | R | +10 | R | R | R | R |
| Strain | 1 | 3 | 9 | 10 | 11 | 12 | 13 | 17 |
|---|---|---|---|---|---|---|---|---|
| Ec3298/1 | 10 | 5 | 5 | 20 | 20 | 5 | 5 | 5 |
| Ec3298/2 | 10 | 5 | 5 | 20 | 20 | 5 | 10 | 5 |
| Ec3298/3 | 10 | 5 | 5 | 20 | 30 | 5 | 10 | 5 |
| Ec3298/4 | 20 | 5 | 5 | 20 | 30 | 10 | 10 | 5 |
| Ec3098/1 | 10 | 5 | 5 | 20 | 20 | 5 | 5 | 5 |
| Ec3098/2 | 10 | 5 | 5 | 10 | 20 | 5 | 5 | 5 |
| Ec3152 | 20 | 10 | 5 | 20 | 20 | 5 | 5 | 5 |
| Ec3276 | 20 | 5 | 5 | 20 | 20 | 5 | 20 | 5 |
| Ec3419/1 | 20 | 5 | 5 | 20 | 20 | 5 | 5 | 5 |
| Ec3419/2 | 20 | 5 | 5 | 10 | 20 | 5 | 10 | 5 |
| Ec3419/3 | 10 | 5 | 5 | 10 | 20 | 5 | 10 | 5 |
| Ec3419/4 | 10 | 5 | 5 | 10 | 10 | 5 | 5 | 5 |
| Ec3419/6 | 20 | 10 | 10 | 20 | 20 | 5 | 5 | 5 |
| Ec7162/2 | 20 | 5 | 5 | 10 | 20 | 5 | 5 | 5 |
| Ec7612/4 | 20 | 5 | 5 | 30 | 30 | 5 | 5 | 30 |
| Ec3477/1 | 20 | 5 | 5 | 20 | 20 | 5 | 5 | 5 |
| Strain | Oregano | Thyme | Sage | Coriander | PS (Ent) 412 |
|---|---|---|---|---|---|
| Ec3298/1 | 35 | 21 | 15 | 21 | 800 h |
| Ec3298/2 | 22 | 27 | 24 | 31 | 100 |
| Ec3298/3 | 19 | 10 | 20 | 10 | 1600 |
| Ec3298/4 | 30 | 21 | 19 | 19 | 6400 |
| Ec3098/1 | 30 | 21 | 21 | 15 | - |
| Ec3098/2 | 30 | 15 | 13 | 10 | - |
| Ec3152 | 30 | 24 | 13 | 19 | - |
| Ec3276 | 36 | 14 | 10 | 15 | - |
| Ec3419/1 | 16 | 20 | 9 | 10 | 3200 |
| Ec3419/2 | 30 | 5 | 10 | 12 | - |
| Ec3419/3 | 23 | 25 | 10 | 7 | 1600 |
| Ec3419/4 | 27 | 20 | 15 | 10 | - |
| Ec3419/6 | 20 | 20 | 10 | 12 | - |
| Ec7162/2 | 20 | 15 | 10 | 10 | - |
| Ec7612/4 | 21 | 14 | 10 | 10 | - |
| Ec3477/1 | 35 | 13 | 10 | 10 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
