Submitted:
18 December 2025
Posted:
18 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Raw Materials and Preparation
2.2. Fibres and Alkaline Reagents
- n(NaOH)=47,53/40,00=1,188 mol
- n(KOH)=130,95/56,1056=2,334 mol
- n(OH-) =3,522 por 1000 g de aglomerante.
2.3. Mix Design and Experimental Plan
2.4. Mixing, Casting, and Curing
2.5. Mechanical Testing
2.6. Stereomicroscopy of Fracture Surfaces
2.7. X-Ray Diffraction (XRD): Grinding, Mounting, and Scan
2.8. Fourier-Transform Infrared Spectroscopy (FTIR)
2.9. Scanning Electron Microscopy and EDS (SEM-EDS)
2.10. Data Treatment and Statistical Analysis
3. Results
3.1. Mechanical Properties
3.1.1. Compressive Strength (7–14–28 Days)
3.1.2. Flexural Strength (Three-Point Bending)
3.1.3. Compression–Flexure Correlation
3.2. Fracture Morphology in Bending (28 Days)
- 0.0%: straight fracture plane, low tortuosity, minimal branching;
- 1.0%: more sinuous crack path and moderate pull-out;
- 1.5%: high density of active fibres (bridges), secondary branching, visible extraction lengths;
- 2.0%: fibre agglomerates and connected pores near the fracture plane.
3.3. X-Ray Diffraction (XRD)
3.4. Fourier-Transform Infrared Spectroscopy (FTIR)
3.5. Scanning Electron Microscopy and EDS (SEM-EDS)
3.6. Statistical Summary (Assumptions, ANOVA, Tukey)
- Compression (all ages): 1.0% (a) > 0.0% (b) = 1.5% (b) > 2.0% (c).
- Flexure: 1.0% = 1.5% (a) > 2.0% (b) > 0.0% (c) at 7–14 days; and 1.0% = 1.5% (a) > 2.0% = 0.0% (b) at 28 days.
4. Discussion
4.1. Optimal Sisal Dosage: A Bridging–Porosity Compromise
4.2. Hybrid Gel Chemistry Enabled by RBP/RCP (70/30)
4.3. Microstructure–Property Integration
4.3.1. Mechanistic Evidence from Sisal-Reinforced Polymer Composites and Relevance to RBP/RCP Mortars
4.4. Design and Processing Implications (Addressing Reviewers’ Requests)
- Matrix control. Maintain A/S and curing (T/RH) as specified; the degree of gelation governs ITZ quality and thus the pull-out vs. fibre-rupture balance [34,35,36,37,38,39,40,85,90,94]. These measures align with the statistical evidence (large effect sizes η2; significant differences among dosages), the fracture morphologies, and the mechanistic map requested by reviewers: mechanism → statistics → practical guidance (Figure 2, Figure 3 and Figure 4; Table 3 and Table 4; ).
- At the rheological level, RCP—and more markedly RBP/CBP—increase water/activator demand and absorption due to their fineness and porosity; therefore, tuning the A/S ratio and applying gentle de-airing are critical to prevent connected porosity and to preserve the optimal fibre window [72].
- Regarding durability, CBP (≡RBP) has been reported to show better acid resistance, whereas RCP contributes thermal stability; both effects are consistent with our observations of a denser matrix and a more effective fibre–matrix interface [72].
- Surface treatment (future work). Consider mild mercerisation (≤6 wt% NaOH, short exposure) to enhance interfacial anchorage without fibre damage, by analogy with sisal composites; verify compatibility with the N-A-S-H / C-(A)-S-H hybrid gel chemistry of the RBP/RCP system before scaling [98].
4.5. Limitations and Scope
4.6. Relevance for Low-Carbon Construction
5. Conclusions
- System viability (RBP/RCP). Geopolymer mortars with RBP/RCP = 70/30 wt%, activated with NaOH/Na2SiO3/KOH at A/S = 0.485, develop strength from 7→28 days, evidencing a consolidated, workable matrix suitable for low-carbon construction uses.
-
Non-linear sisal effect and optimal window. Sisal reinforcement shows a non-linear response with an optimal window at ~1.0–1.5 wt%:
- -
- Compression: peak performance at ~1.0 wt% versus 0%.
- -
- Flexure (MOR) and toughness: peak at ~1.5 wt%, with a longer post-peak segment and gradual load decay.
- Penalty at 2.0 wt%. At 2.0 wt%, fibre clustering and connected porosity reduce the effective load-bearing section, penalising flexure more than compression, confirming that the net benefit hinges on dispersion and de-airing control.
- Hybrid gel chemistry and densification. The RBP/RCP blend promotes coexistence and co-reticulation of N-A-S-H and C-(A)-S-H gels (Ca contributed by RCP), consistent with: (i) a better-defined amorphous hump in XRD without dominant new crystalline phases; (ii) downshift/broadening of the T–O–T FTIR band indicating greater polycondensation; and (iii) a denser microstructure and tighter ITZ in SEM-EDS at 28 days.
- Fractography–mechanics correlation. At ~1.5 wt%, tortuous crack paths, bridging and visible pull-out explain the higher fracture work and post-peak capacity; at 2.0 wt%, bundles/pores near the crack plane align with the observed MOR decrease.
-
Robust statistical support. Assumptions were met (Shapiro–Wilk, Levene). Fibre content significantly affected the response (ANOVA, p < 0.001; large η2). Tukey patterns matched the mechanical reading:
- Key practical takeaway. For RBP/RCP matrices under this study’s conditions, ~1.5 wt% sisal is recommended when flexure/toughness is critical; ~1.0 wt% is advantageous for compression. Performance depends on proper dispersion, brief de-airing, and ~1 cm fibre length, while keeping A/S and curing constant.
- Contribution to circularity. The system valorises C&D waste (RBP and RCP) and provides a reproducible route to fibre-toughened, lower-CO2 geopolymer mortars, suitable for non-structural/semi-structural elements where flexural capacity and post-peak behaviour are decisive.
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Pacheco-Torgal, F.; Jalali, S. Earth construction: Lessons from the past for future eco-efficient construction. Constr. Build. Mater. 2012, 29, 512–519. [Google Scholar] [CrossRef]
- Huntzinger, D.N.; Eatmon, T.D. A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J. Clean. Prod. 2009, 17, 668–675. [Google Scholar] [CrossRef]
- Gartner, E. Industrially interesting approaches to ‘low-CO2’ cements. Cement and Concrete Research 2004, 34, 1489–1498. [Google Scholar] [CrossRef]
- Ober, J. A. Mineral Commodity Summaries 2017, U.S. Geological Survey. Reston, VA, 2017. [Google Scholar]
- Fernandez Pales, A.; Leung, Y. Technology Roadmap - Low-Carbon Transition in the Cement Industry. International Energy Agency, 2018. [Google Scholar]
- IEC. “Informe Económico de la Construcción Nº 76”. 2024. [Google Scholar]
- Schreiber, F. A. El sector construcción en Perú registra un crecimiento del 3,8% durante el primer trimestre del año. Infobae. 2024. [Google Scholar]
- BCRP. “INFORME DE ACTUALIZACIÓN DE PROYECCIONES MACROECONÓMICAS 2024-2027”. 2024. [Google Scholar]
- INEI, Perú: Anuario de Estadísticas Ambientales 2021; Lima, Perú, 2021.
- BCRP, Caracterización del departamento de La Libertad; Trujillo, Perú, 2023.
- INEI. Características de las viviendas particulares y los hogares, acceso a servicios básicos. 2018. [Google Scholar]
- Decreto Legislativo N.º 1278, Ley de Gestión Integral de Residuos Sólidos; Diario Oficial El Peruano: Lima, Perú, 2016.
- Reglamento de la Ley de Gestión Integral de Residuos Sólidos. Decreto Supremo N.º 014-2017-MINAM; Diario Oficial El Peruano. Lima, Perú, 2017.
- Reglamento para la Gestión y Manejo de Residuos de las Actividades de Construcción y Demolición. Decreto Supremo N.º 003-2013-VIVIENDA; Diario Oficial El Peruano. Lima, Perú, 2013.
- Andrew, R. Global CO2 emissions from cement production, 1928–2018. In Earth System Science Data Discussions; 2019; pp. 1–67. [Google Scholar]
- El-Salamony, A.-H.R.; Mahmoud, H.M.; Shehata, N. Enhancing the efficiency of a cement plant kiln using modified alternative fuel. Environ. Nanotechnology, Monit. Manag. 2020, 14. [Google Scholar] [CrossRef]
- Hasanbeigi, A.; Morrow, W.; Masanet, E.; Sathaye, J.; Xu, T. Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China. Energy Policy 2013, 57, 287–297. [Google Scholar] [CrossRef]
- Bajpai, R.; Choudhary, K.; Srivastava, A.; Sangwan, K.S.; Singh, M. Environmental impact assessment of fly ash and silica fume based geopolymer concrete. J. Clean. Prod. 2020, 254. [Google Scholar] [CrossRef]
- Cong, P.; Cheng, Y. Advances in geopolymer materials: A comprehensive review. J. Traffic Transp. Eng. English Ed. 2021, 8, 283–314. [Google Scholar] [CrossRef]
- Das, S.; Mohapatra, A.; Rath, A. Geo-polymer Concrete-Green Concrete for the Future-A Review. 2014. [Google Scholar]
- Chen, R.; Ahmari, S.; Zhang, L. Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer. J. Mater. Sci. 2013, 49, 2548–2558. [Google Scholar] [CrossRef]
- Cheng, T.-W.; Chiu, J.P. Fire-resistant geopolymer produced by granulated blast furnace slag. Miner. Eng. 2003, 16, 205–210. [Google Scholar] [CrossRef]
- Salih, M.A.; Ali, A.A.A.; Farzadnia, N. Characterization of mechanical and microstructural properties of palm oil fuel ash geopolymer cement paste. Constr. Build. Mater. 2014, 65, 592–603. [Google Scholar] [CrossRef]
- Ahmari, S.; Ren, X.; Toufigh, V.; Zhang, L. Production of geopolymeric binder from blended waste concrete powder and fly ash. Constr. Build. Mater. 2012, 35, 718–729. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S. Tungsten mine waste geopolymeric binder: Preliminary hydration products investigations. Constr. Build. Mater. 2009, 23, 200–209. [Google Scholar] [CrossRef]
- Vásquez, A.; Cárdenas, V.; Robayo, R.A.; de Gutiérrez, R.M. Geopolymer based on concrete demolition waste. Adv. Powder Technol. 2016, 27, 1173–1179. [Google Scholar] [CrossRef]
- Zawrah, M.; Gado, R.; Feltin, N.; Ducourtieux, S.; Devoille, L. Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production. Process. Saf. Environ. Prot. 2016, 103, 237–251. [Google Scholar] [CrossRef]
- Atiş, C.; Görür, E.; Karahan, O.; Bilim, C.; İlkentapar, S.; Luga, E. Very high strength (120MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Constr. Build. Mater. 2015, 96, 673–678. [Google Scholar] [CrossRef]
- Mo, B.-H.; Zhu, H.; Cui, X.-M.; He, Y.; Gong, S.-Y. Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Appl. Clay Sci. 2014, 99, 144–148. [Google Scholar] [CrossRef]
- Allahverdi, A.; Mehrpor, K.; Najafi, y E. Taftan Pozzolan-Based Geopolymer Cement. Int. J. Eng. Sci. 2008, 19, 1–5. [Google Scholar]
- McLellan, B.C.; Williams, R.P.; Lay, J.; van Riessen, A.; Corder, G.D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J. Clean. Prod. 2011, 19, 1080–1090. [Google Scholar] [CrossRef]
- Tchadjie, L.N.; Ekolu, S.O. Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis. J. Mater. Sci. 2017, 53, 4709–4733. [Google Scholar] [CrossRef]
- Shehata, N.; Sayed, E.T.; Abdelkareem, M.A. Recent progress in environmentally friendly geopolymers: A review. Sci. Total. Environ. 2021, 762, 143166. [Google Scholar] [CrossRef]
- Singh, B.; Ishwarya, G.; Gupta, M.; Bhattacharyya, S. Geopolymer concrete: A review of some recent developments. Constr. Build. Mater. 2015, 85, 78–90. [Google Scholar] [CrossRef]
- Ranjbar, N.; Zhang, M. Fiber-reinforced geopolymer composites: A review. Cem. Concr. Compos. 2020, 107, 103498. [Google Scholar] [CrossRef]
- Singh, A.; Wang, Y.; Zhou, Y.; Sun, J.; Xu, X.; Li, Y.; Liu, Z.; Chen, J.; Wang, X. Utilization of antimony tailings in fiber-reinforced 3D printed concrete: A sustainable approach for construction materials. Constr. Build. Mater. 2023, 408, 133689. [Google Scholar] [CrossRef]
- Van Gorkum, C. CO2 emissions and energy consumption during the construction of concrete structures. 2010. [Google Scholar]
- Pacheco-Torgal, F.; Jalali, S. Cementitious building materials reinforced with vegetable fibres: A review. Constr. Build. Mater. 2011, 25, 575–581. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Z.; Xie, Z.; Wei, L.; Hua, J.; Huang, L.; Yap, P.-S. Recent developments on natural fiber concrete: A review of properties, sustainability, applications, barriers, and opportunities. Dev. Built Environ. 2023, 16. [Google Scholar] [CrossRef]
- Noman, M.T.; Petru, M.; Louda, P.; Kejzlar, P. Woven Textiles Coated with Zinc Oxide Nanoparticles and Their Thermophysiological Comfort Properties. J. Nat. Fibers 2021, 19, 4718–4730. [Google Scholar] [CrossRef]
- Shaikh, F.U.A. Review of mechanical properties of short fibre reinforced geopolymer composites. Constr. Build. Mater. 2013, 43, 37–49. [Google Scholar] [CrossRef]
- Jamshaid, H.; Mishra, R.; Militky, J.; Pechociakova, M.; Noman, M.T. Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics. Fibers Polym. 2016, 17, 1675–1686. [Google Scholar] [CrossRef]
- Arisoy, B. Development and fracture evaluation of high performance fiber reinforced lightweight concrete. 2002. [Google Scholar]
- Zhao, Q.; Nair, B.; Rahimian, T.; Balaguru, P. Novel geopolymer based composites with enhanced ductility. J. Mater. Sci. 2007, 42, 3131–3137. [Google Scholar] [CrossRef]
- Natali, A.; Manzi, S.; Bignozzi, M. Novel fiber-reinforced composite materials based on sustainable geopolymer matrix. Procedia Eng. 2011, 21, 1124–1131. [Google Scholar] [CrossRef]
- Puertas, F.; Amat, T.; Fernández-Jiménez, A.; Vázquez, T. Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cem. Concr. Res. 2003, 33, 2031–2036. [Google Scholar] [CrossRef]
- Noman, M.T.; Ashraf, M.A.; Jamshaid, H.; Ali, A. A Novel Green Stabilization of TiO2 Nanoparticles onto Cotton. Fibers Polym. 2018, 19, 2268–2277. [Google Scholar] [CrossRef]
- Al-Oraimi, S.; Seibi, A. Mechanical characterisation and impact behaviour of concrete reinforced with natural fibres. Compos. Struct. 1995, 32, 165–171. [Google Scholar] [CrossRef]
- Ramakrishna, G.; Sundararajan, T. Impact strength of a few natural fibre reinforced cement mortar slabs: a comparative study. Cem. Concr. Compos. 2005, 27, 547–553. [Google Scholar] [CrossRef]
- Ribeiro, R.A.S.; Ribeiro, M.G.S.; Sankar, K.; Kriven, W.M. Geopolymer-bamboo composite – A novel sustainable construction material. Constr. Build. Mater. 2016, 123, 501–507. [Google Scholar] [CrossRef]
- Korniejenko, K.; Frączek, E.; Pytlak, E.; Adamski, M. Mechanical Properties of Geopolymer Composites Reinforced with Natural Fibers. Procedia Eng. 2016, 151, 388–393. [Google Scholar] [CrossRef]
- Naveen, J.; Jawaid, M.; Amuthakkannan, P.; Chandrasekar. [PubMed]
- Sathish, S.; Karthi, N.; Prabhu, L.; Gokulkumar, S.; Balaji, D.; Vigneshkumar, N.; Farhan, T.A.; AkilKumar, A.; Dinesh, V. A review of natural fiber composites: Extraction methods, chemical treatments and applications. Mater. Today: Proc. 2021, 45, 8017–8023. [Google Scholar] [CrossRef]
- Kumar, P.S.S.; Allamraju, K.V. A Review Of Natural Fiber Composites [Jute, Sisal, Kenaf]. Mater. Today: Proc. 2019, 18, 2556–2562. [Google Scholar] [CrossRef]
- Wei, J.; Meyer, C. Degradation mechanisms of natural fiber in the matrix of cement composites. Cem. Concr. Res. 2015, 73, 1–16. [Google Scholar] [CrossRef]
- Silva, G.; Kim, S.; Bertolotti, B.; Nakamatsu, J.; Aguilar, R. Optimization of a reinforced geopolymer composite using natural fibers and construction wastes. Constr. Build. Mater. 2020, 258. [Google Scholar] [CrossRef]
- Correia, E.A.S.; Torres, S.M.; Alexandre, M.E.d.O.; Gomes, K.C.; Barbosa, N.P.; de Barros, S.R. Mechanical Performance of Natural Fibers Reinforced Geopolymer Composites. Mater. Sci. Forum 2013, 758, 139–145. [Google Scholar] [CrossRef]
- Wongsa, A.; Kunthawatwong, R.; Naenudon, S.; Sata, V.; Chindaprasirt, P. Natural fiber reinforced high calcium fly ash geopolymer mortar. Constr. Build. Mater. 2020, 241. [Google Scholar] [CrossRef]
- Izquierdo, I.S.; Izquierdo, O.S.; Ramalho, M.A.; Taliercio, A. Sisal fiber reinforced hollow concrete blocks for structural applications: Testing and modeling. Constr. Build. Mater. 2017, 151, 98–112. [Google Scholar] [CrossRef]
- Bai, T.; Liu, B.; Wu, Y.; Huang, W.; Wang, H.; Xia, Z. Mechanical properties of metakaolin-based geopolymer with glass fiber reinforcement and vibration preparation. J. Non-Crystalline Solids 2020, 544. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, C.; Wang, X.; He, R.; Li, S. Fabrication and characterization of recycled construction waste bricks modified with sisal fibers. Alex. Eng. J. 2024, 105, 1–11. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.N.; Meskhi, B.; Efremenko, I.; Shilov, A.A.; Vialikov, I.; Ananova, O.; Chernil’nik, A.; Elshaeva, D. Composition, Structure and Properties of Geopolymer Concrete Dispersedly Reinforced with Sisal Fiber. Buildings 2024, 14, 2810. [Google Scholar] [CrossRef]
- Alomayri, T.; Shaikh, F.; Low, I. Characterisation of cotton fibre-reinforced geopolymer composites. Compos. Part B: Eng. 2013, 50, 1–6. [Google Scholar] [CrossRef]
- Khedari, J.; Suttisonk, B.; Pratinthong, N.; Hirunlabh, J. New lightweight composite construction materials with low thermal conductivity. Cem. Concr. Compos. 2001, 23, 65–70. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; Evtushenko, A.; El’shaeva, D.; Chernil’nik, A. Improving the Physical and Mechanical Characteristics of Modified Aerated Concrete by Reinforcing with Plant Fibers. Fibers 2023, 11, 33. [Google Scholar] [CrossRef]
- Cheng, Z.; Yan, W.; Sui, Z.; Tang, J.; Yuan, C.; Chu, L.; Feng, H. Effect of Fiber Content on the Mechanical Properties of Engineered Cementitious Composites with Recycled Fine Aggregate from Clay Brick. Materials 2021, 14, 3272. [Google Scholar] [CrossRef]
- Kong, K.; Mesticou, Z.; Michel, M.; Larbi, A.S.; Junes, A. Comparative characterization of the durability behaviour of textile-reinforced concrete (TRC) under tension and bending. Compos. Struct. 2017, 179, 107–123. [Google Scholar] [CrossRef]
- Guo, X.; Pan, X. Mechanical properties and mechanisms of fiber reinforced fly ash–steel slag based geopolymer mortar. Constr. Build. Mater. 2018, 179, 633–641. [Google Scholar] [CrossRef]
- Lv, C.; Liu, J.; Guo, G.; Zhang, Y. The Mechanical Properties of Plant Fiber-Reinforced Geopolymers: A Review. Polymers 2022, 14, 4134. [Google Scholar] [CrossRef]
- Qu, W.; Niu, B.; Lv, C.; Liu, J. A Review of Sisal Fiber-Reinforced Geopolymers: Preparation, Microstructure, and Mechanical Properties. Molecules 2024, 29, 2401. [Google Scholar] [CrossRef] [PubMed]
- Benfratello, S.; Cirello, A.; Palizzolo, L.; Sanfilippo, C.; Valenza, A. Experimental Analysis and Numerical Modelling of the Mechanical Behavior of a Sisal-Fiber-Reinforced Geopolymer. Appl. Sci. 2024, 14, 5216. [Google Scholar] [CrossRef]
- Tahwia, A.M.; Abdellatief, M.; Salah, A.; Youssf, O. Valorization of recycled concrete powder, clay brick powder, and volcanic pumice powder in sustainable geopolymer concrete. Sci. Rep. 2025, 15, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Ardanuy, M.; Claramunt, J.; Filho, R.D.T. Cellulosic fiber reinforced cement-based composites: A review of recent research. Constr. Build. Mater. 2015, 79, 115–128. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Beskopylny, A.N.; Smolyanichenko, A.S.; Chernil’nik, A.; Elshaeva, D.; Beskopylny, N. Influence of Polymer Fibers on the Structure and Properties of Modified Variatropic Vibrocentrifuged Concrete. Polymers 2024, 16, 642. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.; Lukey, G. C.; Palomo, A.; van Deventer, J. AAS technology: The current state of the art. Journal of Materials Science 2006, 42, 2917–2933. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, L. Experimental Study of Geopolymer Concrete Produced from Waste Concrete. J. Mater. Civ. Eng. 2019, 31, 1–14. [Google Scholar] [CrossRef]
- Sajan, P.; Jiang, T.; Lau, C.; Tan, G.; Ng, K. Combined effect of curing temperature, curing period and alkaline concentration on the mechanical properties of fly ash-based geopolymer. Clean. Mater. 2021, 1, 100002. [Google Scholar] [CrossRef]
- Osholana, T.S.; Dludlu, M.K.; Oboirien, B.; Sadiku, R. Enhanced reactivity of geopolymers produced from fluidized bed combustion bottom ash. South Afr. J. Chem. Eng. 2020, 34, 72–77. [Google Scholar] [CrossRef]
- Seo, J.; Kim, S.; Jang, D.; Kim, H.; Lee, H. Internal carbonation of belite-rich Portland cement: An in-depth observation at the interaction of the belite phase with sodium bicarbonate. J. Build. Eng. 2021, 44. [Google Scholar] [CrossRef]
- Adesanya, E.; Ohenoja, K.; Luukkonen, T.; Kinnunen, P.; Illikainen, M. One-part geopolymer cement from slag and pretreated paper sludge. J. Clean. Prod. 2018, 185, 168–175. [Google Scholar] [CrossRef]
- Tome, S.; Nana, A.; Tchakouté, H.K.; Temuujin, J.; Rüscher, C.H. Mineralogical evolution of raw materials transformed to geopolymer materials: A review. Ceram. Int. 2024, 50, 35855–35868. [Google Scholar] [CrossRef]
- Ezzat, M.; Khater, H.; Elnagar, A. Enhanced characteristics of alkali activated slag/grog geopolymer bricks. International Journal of Scientific and Engineering Research 2016, 7. [Google Scholar]
- Ye, J.; Zhang, W.; Shi, D. Properties of an aged geopolymer synthesized from calcined ore-dressing tailing of bauxite and slag. Cem. Concr. Res. 2017, 100, 23–31. [Google Scholar] [CrossRef]
- Samantasinghar, S.; Singh, S.P. Fresh and Hardened Properties of Fly Ash–Slag Blended Geopolymer Paste and Mortar. Int. J. Concr. Struct. Mater. 2019, 13, 47. [Google Scholar] [CrossRef]
- Sasui, S.; Kim, G.; Nam, J.; Koyama, T.; Chansomsak, S. Strength and Microstructure of Class-C Fly Ash and GGBS Blend Geopolymer Activated in NaOH & NaOH + Na2SiO3. Materials (Basel) 2019, 13, 59. [Google Scholar]
- Labaied; Douzane, O.; Lajili, M.; Promis, G. “Bricks Geopolymer Based on Olive Waste Fly Ash: Mechanical Properties,” Bio-Based Building Materials. In ICBBM 2023, RILEM Bookseries; Amziane, S., Merta, I., Page, J., Eds.; Springer: Cham, 2023; vol. 45. [Google Scholar]
- Villaquirán Caicedo, M. A.; de Gutiérrez, R. M. Synthesis of ternary geopolymers based on metakaolin, boiler slag and rice husk ash. Dyna (Medellín, Colombia) 2016, 82, 104–110. [Google Scholar] [CrossRef]
- Arellano-Aguilar, R.; Burciaga-Díaz, O.; Gorokhovsky, A.; Escalante-García, J.I. Geopolymer mortars based on a low grade metakaolin: Effects of the chemical composition, temperature and aggregate:binder ratio. Constr. Build. Mater. 2014, 50, 642–648. [Google Scholar] [CrossRef]
- Li, J.; Mailhiot, S.; Kantola, A.M.; Niu, H.; Sreenivasan, H.; Telkki, V.-V.; Kinnunen, P. Longitudinal single-sided NMR study: Silica-to-alumina ratio changes the reaction mechanism of geopolymer. Cem. Concr. Res. 2022, 160. [Google Scholar] [CrossRef]
- Ng, H.-T.; Heah, C.-Y.; Liew, Y.-M.; Abdullah, M. A. B.; Ng, Y.-S. Microstructural analysis of fly ash-based geopolymers with various alkali concentration. IOP Conference Series: Materials Science and Engineering 2019, 551, 012090. [Google Scholar] [CrossRef]
- Kai, M.-F.; Dai, J.-G. Understanding geopolymer binder-aggregate interfacial characteristics at molecular level. Cem. Concr. Res. 2021, 149. [Google Scholar] [CrossRef]
- Chen, Z.; Li, J.-S.; Zhan, B.-J.; Sharma, U.; Poon, C.S. Compressive strength and microstructural properties of dry-mixed geopolymer pastes synthesized from GGBS and sewage sludge ash. Constr. Build. Mater. 2018, 182, 597–607. [Google Scholar] [CrossRef]
- Yip, C.K.; Lukey, G.C.; Van Deventer, J.S.J. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 2005, 35, 1688–1697. [Google Scholar] [CrossRef]
- Duxson, P.; Mallicoat, S.; Lukey, G.; Kriven, W.; van Deventer, J. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surfaces A: Physicochem. Eng. Asp. 2007, 292, 8–20. [Google Scholar] [CrossRef]
- Maddalena, R.; Li, K.; Chater, P.A.; Michalik, S.; Hamilton, A. Direct synthesis of a solid calcium-silicate-hydrate (C-S-H). Constr. Build. Mater. 2019, 223, 554–565. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Jaturapitakkul, C.; Chalee, W.; Rattanasak, U. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag. 2009, 29, 539–543. [Google Scholar] [CrossRef]
- Elimbi, A.; Tchakoute, H.; Njopwouo, D. Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements. Constr. Build. Mater. 2011, 25, 2805–2812. [Google Scholar] [CrossRef]
- Olhan, S.; Antil, B.; Khatkar, V.; Behera, B. Mechanical, thermal, and viscoelastic behavior of sisal fibre-based structural composites for automotive applications: Experimental and FEM analysis. Compos. Struct. 2023, 322, 117427. [Google Scholar] [CrossRef]
- Sharmin, S.; Biswas, W.K.; Sarker, P.K. Exploring the Potential of Using Waste Clay Brick Powder in Geopolymer Applications: A Comprehensive Review. Buildings 2024, 14, 2317. [Google Scholar] [CrossRef]







| RPC | RBP | ||
|---|---|---|---|
| Óxides | wt% | Óxides | wt% |
| SiO2 | 51.21 | SiO2 | 55.21 |
| CaO | 23.78 | Al2O3 | 19.17 |
| Al2O3 | 10.45 | Fe2O3 | 8.21 |
| Fe2O3 | 5.01 | K2O | 2.74 |
| MgO | 2.46 | MgO | 1.79 |
| K2O | 2.14 | CaO | 1.59 |
| Na2O | 1.27 | Na2O | 1.87 |
| SO3 | 1.98 | ||
| TiO2 | 0.81 | ||
| P2O5 | 0.51 | ||
| MnO | 0.27 | ||
| Mix ID | Sisal (wt% of binder) | RBP in binder (wt%) | RCP in binder (wt%) | Binder (g) | Sisal (g) | Sand (g) | A/S (by binder mass) | Activator total (g) | NaOH (g) | Na2SiO3 (g) | KOH (g) |
|---|---|---|---|---|---|---|---|---|---|---|---|
| M1SF0 | 0 | 70 | 30 | 1000 | 0 | 3000 | 0.485 | 485 | 48.5 | 291 | 145.5 |
| M2SF10 | 1 | 70 | 30 | 1000 | 10 | 3000 | 0.485 | 485 | 48.5 | 291 | 145.5 |
| M3SF15 | 1.5 | 70 | 30 | 1000 | 15 | 3000 | 0.485 | 485 | 48.5 | 291 | 145.5 |
| M4SF20 | 2 | 70 | 30 | 1000 | 20 | 3000 | 0.485 | 485 | 48.5 | 291 | 145.5 |
| Age | Sisal content | Compression (MPa) — Mean ± SD [95% CI] | Tukey letter |
|---|---|---|---|
| 7d | 0% | 10.14 ± 0.35 [9.71, 10.57] | b |
| 7d | 1.0% | 11.61 ± 0.52 [10.96, 12.26] | a |
| 7d | 1.5% | 9.00 ± 0.38 [8.53, 9.47] | b |
| 7d | 2.0% | 8.90 ± 0.53 [8.24, 9.56] | c |
| 14d | 0% | 10.50 ± 0.40 [10.00, 11.00] | b |
| 14d | 1.0% | 12.11 ± 0.44 [11.56, 12.66] | a |
| 14d | 1.5% | 10.47 ± 0.51 [9.84, 11.10] | b |
| 14d | 2.0% | 9.21 ± 0.43 [8.68, 9.74] | c |
| 28d | 0% | 11.64 ± 0.39 [11.16, 12.12] | b |
| 28d | 1.0% | 13.19 ± 0.50 [12.57, 13.81] | a |
| 28d | 1.5% | 11.50 ± 0.49 [10.89, 12.11] | b |
| 28d | 2.0% | 9.40 ± 0.47 [8.82, 9.98] | c |
| Age | Sisal content | Flexural strength, MOR (MPa) — Mean ± SD [95% CI] | Tukey letter |
|---|---|---|---|
| 7d | 0% | 3.28 ± 0.16 [3.09, 3.48] | c |
| 7d | 1.0% | 4.52 ± 0.25 [4.21, 4.84] | a |
| 7d | 1.5% | 4.42 ± 0.10 [4.29, 4.54] | a |
| 7d | 2.0% | 3.83 ± 0.15 [3.65, 4.02] | b |
| 14d | 0% | 3.42 ± 0.08 [3.32, 3.52] | c |
| 14d | 1.0% | 4.88 ± 0.10 [4.76, 5.01] | a |
| 14d | 1.5% | 4.96 ± 0.38 [4.49, 5.43] | a |
| 14d | 2.0% | 4.12 ± 0.11 [3.98, 4.26] | b |
| 28d | 0% | 3.94 ± 0.24 [3.65, 4.23] | b |
| 28d | 1.0% | 5.38 ± 0.20 [5.13, 5.63] | a |
| 28d | 1.5% | 5.54 ± 0.26 [5.22, 5.86] | a |
| 28d | 2.0% | 4.16 ± 0.46 [3.58, 4.73] | b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
