In this paper, a wireless network architecture is considered that combines double Intelligent Reflecting Surfaces (IRSs), Energy Harvesting (EH), and Non-Orthogonal Multiple Access (NOMA) with cooperative relaying (C-NOMA), to leverage the performance of Non-Line-of-Sight (NLoS) communication and incorporate energy efficiency in next-generation networks. To optimize the phase shifts of both IRSs, we employ a machine learning model that offers a low-complexity alternative to traditional optimization methods. This lightweight learning-based approach is introduced to predict effective IRS phase configurations without relying on solver-generated labels or repeated iterations.
The model learns from channel behaviour and system observations, which allows it to react rapidly under dynamic channel conditions. Numerical analysis demonstrates the validity of the proposed architecture in providing considerable improvements in terms of spectral efficiency and service reliability through the integration of energy harvesting and relay-based communication, compared to conventional systems, thereby facilitating green communication systems.