Submitted:
12 December 2025
Posted:
18 December 2025
You are already at the latest version
Abstract
In this study, three point mutations of EGFR relevant to lung cancer therapy are detected. Mutated EGFR is the target of a therapy for non-small cell lung cancer (NSCLC) using tyrosine kinase inhibitors (TKIs) as treatment drugs. Background/Objectives: Point mutations in exon 21 (L858R and L861Q) of the EGFR gene are TKI-sensitive; however, mutations in exon 20 (T790M) are TKI-resistant. Therefore, a fast detection method that classifies a NSCLC patient to be drug sensitive or drug resistant is highly clinically relevant. Methods: Probes were designed to detect three point mutations in genomic samples based on DNA hybridization on a solid surface. A method has been developed to detect single nucleotide polymorphism (SNP) for these mutation detections in the 16-channel nanobioarray chip. The wash by gold-nanoparticles (AuNP) was used to assist the differentiation detection Results: The gold nanoparticle-assisted wash method has enhanced differentiation between WT and mutated sequences relevant to the EGFR sensitivity to tyrosine kinase inhibitors. Conclusions: The WT and mutated sequences (T790M, L858R and L861Q) in genomic samples were successfully differentiated from each other.