Submitted:
15 December 2025
Posted:
16 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results and Discussion
2.1. Antioxidant Activity and Content of Phenolics and flavonoids
2.2. B. congestiflora Extract Causes Contraction in Rat Aorta
2.3. B. congestiflora Extract Produces Vasorelaxation Endothelium-Dependent, via NO, in Rat Aorta
2.3. Enzyme Inhibitory Properties
2.4. Analysis of the Phenolic and Anthocyanin Profile of BE
2.4.1. Chromatographic Analysis

| Sample | DPPHa | ABTSa | ORACb | FRAPb | TPCc | TACd | TFCe | AChEf | BuChEf | α-Glucosidaseg | α-Amylaseg |
| BE extract | 5.32 ± 0.5 | 6.78 ± 0.04 | 175.9 ± 3.43 | 148.7 ± 0.03 | 76.35 ± 0.01 | 32.26 ± 1.23 | 63.2 ± 0.2 | 7.33 ± 0.32 | 19.45 ± 0.32 | 243.23 ± 0.3 | 27.21 ± 0.03 |
| Gallic acid | 2.30 ± 0.5 | 16.5± 0.04 | - | - | - | - | - | - | - | - | - |
| Acarbose | - | - | - | - | - | - | - | - | - | 138.9 ± 0.01 | 10.04 ± 0.02 |
| Galantamine | - | - | - | - | - | - | - | 0.402 + 0.02e | 5.45 ± 0.01 | - | - |
| Quercetin | 12.25 ± 0.6 | 15.65 ± 0.05 | - | - | - | - | - | - | - | - | - |
| Peak |
Rt (min) |
HPLC DAD λ max (nm) |
ESI mode |
[M-H] – (m/z) |
MS-MS ions (m/z) |
Tentative identification |
| 1 | 2.2 | 268, 357sh, 503 | + | 611 | 287 | Cyanidin 3,5-O-diglucose |
| 2 | 3.1 | 268, 357sh, 503 | + | 595 | 287 | Cyanidin 3-O-(6’’-O-p-coumaroyl)-glucose |
| 3 | 3.3 | 275, 343sh, 512 | + | 641 | 317, 302 | Petunidin 3,5-O-diglucose |
| 4 | 6.1 | 275, 343sh, 512 | + | 479 | 317, 302 | Petunidin 3-O-glucose |
| 5 | 8.2 | 268, 357sh, 503 | + | 609 | 463, 301, 286 | Peonidin 3-O-rutinose |
| 6 | 9.8 | 275, 341sh, 512 | + | 465 | 303, 257 | Delphinidin 3-O-glucose |
| 7 | 11 | 268, 357sh, 503 | + | 463 | 301, 286 | Peonidin 3-O-glucose |
| 8 | 11.2 | 268, 357sh, 503 | + | 505 | 317, 302 | Peonidin 3-O-6’’-O-acetyl-glucoside |
| 9 | 12.1 | 246, 310 | - | 515 | 353, 191, 179 | Di-caffeoyl-quinic acid |
| 10 | 13.2 | 246, 310 | - | 353 | 191, 179 | Chlorogenic acid |
| 11 | 12.3 | 268, 357sh, 503 | + | 625 | 317, 302 | Peonidin 3, 5-di-O-glucose |
| 12 | 14.6 | 275, 343sh, 512 | + | 639 | 331, 299, 179 | Malvidin 3-O-rutinose |
| 13 | 16 | 278, 503 | + | 449 | 287, 213, 147 | Cyanidin- 3-O-glucose |
| 14 | 16.3 | 275, 343sh, 512 | + | 493 | 331, 299, 179 | Malvidin 3-O-glucose* |
| 15 | 16.7 | 275, 343sh, 512 | + | 331 | 299, 179 | Malvidin |
| 16 | 17.2 | 255, 354 | - | 463 | 301, 179, 151 | Quercetin-3-O-glucoside |
| 17 | 18.7 | 255, 354 | - | 505 | 463, 301, 179, 151 | Quercetin-3-O-2’’acetyl-glucoside |
| 18 | 22.5 | 265, 354 | + - | 477, 479 | 955 (2M-H) 315, 300 | Isorhamnetin-3-O-glucose |
| 19 | 23.4 | 255, 354 | - | 623 | 315 | Isorhamnetin 3-O-rutinoside |
| 20 | 23.8 | 255, 354 | - | 463 | 301, 179, 151 | Quercetin-3-O-glucoside* |
| 21 | 24.2 | 254, 354 | - | 609 | 301, 179, 151 | Rutin * |
| 22 | 24.9 | 255, 354 | - | 447 | 287 | Luteolin 7-O-glucoside |
| 23 | 25.3 | 255, 354 | - | 597 | 287 | Phloretin 3,5,C-diglucoside |
| 24 | 25.7 | 255, 354 | - | 519 | 477, 315, 179, 151 | Isorhamnetin-3-O-6-O-acetyl-glucoside |
| 25 | 26.1 | 255, 354 | - | 529 | 367 | Feruloyl-caffeoyl-quinic acid |
| 26 | 26.5 | 240-290 | - | 373 | 171 | Hydroxypinoresinol |
| 27 | 28.3 | 246, 310 | - | 371 | 209, 742 (2M-H-) | Hydroxyferulic acid |
| 28 | 29.7 | 265, 354 | + - | 315, 317 | 300, 179, 151 | Isorhamnetin* |
| 29 | 30.2 | 265, 354 | + - | 315, 317 | 300, 179, 151 | Rhamnetin |
| 30 | 31.3 | 246, 310 | - | 339 | 295 | Caffeoyl-2-hydroxyethane-1,1,2-tricarboxylic acid |
| 31 | 31.6 | 255, 354 | + - | 301, 303 | 295 | Quercetin* |

2.5.1. Docking Calculations
Acetylcholinesterase (TcAChE) Docking Results
Butyrylcholinesterase (hBuChE) Docking Results
Glucosidase Docking Results
α-Amylase Docking Results
3.1. Chemicals, Reagents, and Materials
3.2. Plant Material
3.3. Berry Extract Preparation
3.4. Chemical Analyses
3.4.2. Total Polyphenol, Anthocyanins and Flavonoids Quantification
3.4.3. HPLC Analysis and Mass Spectrometric Conditions
3.5. Antioxidant Activity
3.5.1. Oxygen Radical Absorbance Capacity (ORAC) Assay
3.5.2. Ferric Reducing Antioxidant Power (FRAP) Assay
3.5.3. DPPH Scavenging Activity
3.5.4. ABTS Scavenging Activity
3.6. Aortic Experimental Protocols
3.7. Enzymatic Inhibitory Activity
3.7.1. Acetylcholinesterase and Butyrylcholinesterase Inhibition Assays
3.7.2. α-Glucosidase Inhibition Assay
3.7.3. α-Amylase Inhibition Assay
3.8. Docking Calculations
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fuentes-Castillo, T.; Hernández, H.J.; Pliscoff, P. Hotspots and ecoregion vulnerability driven by climate change velocity in Southern South America. Reg Environ Chang 2020, 20, 1–15. [Google Scholar] [CrossRef]
- Tecklin, D.; DellaSala, D.A.; Luebert, F.; Pliscoff, P. Valdivian Temperate Rainforests of Chile and Argentina. In Temperate and Boreal Rainforests of the World: Ecology and Conservation; Island Press/Center for Resource Economics, 2011; pp. 132–153.
- Brito, A.; Areche, C.; Sepúlveda, B.; Kennelly, E.J.; Simirgiotis, M.J. Anthocyanin characterization, total phenolic quantification and antioxidant features of some chilean edible berry extracts. Molecules 2014, 19. [Google Scholar] [CrossRef] [PubMed]
- Ramos, L.C.; Palacios, J.; Barrientos, R.E.; Gómez, J.; Castagnini, J.M.; Barba, F.J.; Tapia, A.; Paredes, A.; Cifuentes, F.; Simirgiotis, M.J. UHPLC-MS Phenolic Fingerprinting, Aorta Endothelium Relaxation Effect, Antioxidant, and Enzyme Inhibition Activities of Azara dentata Ruiz & Pav Berries. Foods 2023, 12. [Google Scholar] [CrossRef] [PubMed]
- Hopfstock, P.; Romero-Parra, J.; Winterhalter, P.; Gök, R.; Simirgiotis, M. In Vitro Inhibition of Enzymes and Antioxidant and Chemical Fingerprinting Characteristics of Azara serrata Ruiz & Pav. Fruits, an Endemic Plant of the Valdivian Forest of Chile. Plants 2024, 13. [Google Scholar] [CrossRef] [PubMed]
- Jara-Seguel, P.; Zúniga, C.; Romero-Mieres, M.; Palma-Rojas, C.; von Brand, E. Luzuriagaceae), Karyotype study in Luzuriaga radicans (Liliales: Luzuriagaceae). Biologia (Bratisl) 2010, 65, 813–816. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Gan, R.-Y.; Li, S.; Zhou, Y.; Li, A.-N.; Xu, D.-P.; Li, H.-B. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef]
- Li, P.; Zhang, H.; Chen, J.; Shi, Y.; Cai, J.; Yang, J.; Wu, Y. Association between dietary antioxidant vitamins intake/blood level and risk of gastric cancer. Int. J. Cancer 2014, 135, 1444–1453. [Google Scholar] [CrossRef]
- Gan, R.Y.; Kuang, L.; Xu, X.R.; Zhang, Y.A.; Xia, E.Q.; Song, F.L.; Li, H.B. Screening of natural antioxidants from traditional Chinese medicinal plants associated with treatment of rheumatic disease. Molecules 2010, 15, 5988–5997. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Hossain, R.; Herrera-Bravo, J.; Islam, M.T.; Atolani, O.; Adeyemi, O.S.; Owolodun, O.A.; Kambizi, L.; Daştan, S.D.; Calina, D.; Sharifi-Rad, J. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. Food Sci Nutr. 2023, 11, 1657–1670. [Google Scholar] [CrossRef]
- Charles, D.; Mgina, C. Proximate composition of Vitex doniana and Saba comorensis fruits. Sci Rep. 2023, 13, 20553. [Google Scholar] [CrossRef]
- Agu, K.C.; Okolie, P.N. Proximate composition, phytochemical analysis, and in vitro antioxidant potentials of extracts of Annona muricata (Soursop). Food Sci Nutr. 2017, 5, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Abdi Bellau, M.L.; Chiurato, M.A.; Maietti, A.; Fantin, G.; Tedeschi, P.; Marchetti, N.; Tacchini, M.; Sacchetti, G.; Guerrini, A. Nutrients and Main Secondary Metabolites Characterizing Extracts and Essential Oil from Fruits of Ammodaucus leucotrichus Coss. & Dur. (Western Sahara). Molecules 2022, 27, 5013. [Google Scholar] [CrossRef]
- Kalili, A.; El Ouafi, R.; Aboukhalaf, A.; Naciri, K.; Tbatou, M.; Essaih, S.; Belahyan, A.; Belahsen, R. Chemical composition and antioxidant activity of extracts from Moroccan fresh fava beans pods (Vicia Faba L.). Rocz Panstw Zakl Hig. 2022, 73, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Ilić, T.; Đuričić, I.; Kodranov, I.; Ušjak, L.; Kolašinac, S.; Milenković, M.; Marčetić, M.; Božić, D.D.; B Vidović, B. Nutritional Value, Phytochemical Composition and Biological Activities of Lycium barbarum L. fruits from Serbia. Plant Foods Hum Nutr. 2024, 79, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Katunzi-Kilewela, A.; Rweyemamu, L.M.; Kaale, L.D.; Kibazohi, O.; Fortunatus, R.M. Proximate composition, pasting and functional properties of composite flour blends from cassava and chia seeds flour. Food Sci Technol Int. 2023, 29, 217–227. [Google Scholar] [CrossRef]
- Checa, J.; Aran, J.M. Reactive oxygen species: Drivers of physiological and pathological processes. J Inflamm Res 2020, 13, 1057–1073. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 2010, 4, 118–126. [Google Scholar] [CrossRef]
- Vargas--Arana, G.; Merino--Zegarra, C.; Riquelme--Penaherrera, M.; Nonato--Ramirez, L.; Delgado--Wong, H.; Pertino, M.W.; Parra, C.; Simirgiotis, M.J. Antihyperlipidemic and antioxidant capacities, nutritional analysis and uhplc--pda--ms characterization of cocona fruits (Solanum sessiliflorum dunal) from the peruvian amazon. Antioxidants 2021, 10. [Google Scholar] [CrossRef]
- Torres-Benítez, A.; Ortega-Valencia, J.E.; Jara-Pinuer, N.; Ley-Martínez, J.S.; Velarde, S.H.; Pereira, I.; Sánchez, M.; Gómez-Serranillos, M.P.; Sasso, F.C.; Simirgiotis, M.; et al. Antioxidant and Antidiabetic Potential of the Antarctic Lichen Gondwania regalis Ethanolic Extract: Metabolomic Profile and In Vitro and In Silico Evaluation. Antioxidants 2025, 14, 298. [Google Scholar] [CrossRef]
- Conta, A.; Simirgiotis, M.J.; Martínez Chamás, J.; Isla, M.I.; Zampini, I.C. Extraction of Bioactive Compounds from Larrea cuneifolia Cav. Using Natural Deep Eutectic Solvents: A Contribution to the Plant Green Extract Validation of Its Pharmacological Potential. Plants 2025, 14, 1016. [Google Scholar] [CrossRef]
- INTA PORTAL ANTIOXIDANTES Available online: https://portalantioxidantes.com/orac-base-de-datos-actividad-antioxidante-y-contenido-de-polifenoles-totales-en-frutas/.
- Assefa, S.T.; Yang, E.Y.; Chae, S.Y.; Song, M.; Lee, J.; Cho, M.C.; Jang, S. Alpha glucosidase inhibitory activities of plants with focus on common vegetables. Plants 2020, 9. [Google Scholar] [CrossRef]
- Van De Laar, F.A.; Lucassen, P.L.; Akkermans, R.P.; Van De Lisdonk, E.H.; Rutten, G.E.; Van Weel, C. α-Glucosidase inhibitors for patients with type 2 diabetes: Results from a Cochrane systematic review and meta-analysis. Diabetes Care 2005, 28, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, A. Ekavali A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol Reports 2015, 67, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E.; Rossignol, D.A. Treatments for biomedical abnormalities associated with autism spectrum disorder. Front Pediatr 2014, 2, 66. [Google Scholar] [CrossRef] [PubMed]
- Rolinski, M.; Fox, C.; Maidment, I.; Mcshane, R. Cholinesterase inhibitors for dementia with Lewy bodies, Parkinson’s disease dementia and cognitive impairment in Parkinson’s disease. Cochrane Database Syst Rev 2012, 2012. [Google Scholar] [CrossRef]
- Matsumoto, H.; Ikoma, Y.; Kato, M.; Kuniga, T.; Nakajima, N.; Yoshida, T. Quantification of carotenoids in citrus fruit by LC-MS and comparison of patterns of seasonal changes for carotenoids among citrus varieties. J Agric Food Chem 2007, 55, 2356–2368. [Google Scholar] [CrossRef]
- Petry, F.C.; Mercadante, A.Z. Composition by LC-MS/MS of New Carotenoid Esters in Mango and Citrus. J Agric Food Chem 2016, 64, 8207–8224. [Google Scholar] [CrossRef]
- Lux, P.E.; Carle, R.; Zacarías, L.; Rodrigo, M.J.; Schweiggert, R.M.; Steingass, C.B. Genuine Carotenoid Profiles in Sweet Orange [Citrus sinensis (L.) Osbeck cv. Navel] Peel and Pulp at Different Maturity Stages. J Agric Food Chem 2019, 67, 13164–13175. [Google Scholar] [CrossRef]
- Rodrigues, D.B.; Mercadante, A.Z.; Mariutti, L.R.B. Marigold carotenoids: Much more than lutein esters. Food Res Int 2019, 119, 653–664. [Google Scholar] [CrossRef]
- Wen, X.; Hempel, J.; Schweiggert, R.M.; Ni, Y.; Carle, R. Carotenoids and Carotenoid Esters of Red and Yellow Physalis (Physalis alkekengi L. and P. pubescens L.) Fruits and Calyces. J Agric Food Chem 2017, 65, 6140–6151. [Google Scholar] [CrossRef]
- Kiokias, S.; Gordon, M.H. Antioxidant properties of carotenoids in vitro and in vivo. Food Rev Int 2004, 20, 99–121. [Google Scholar] [CrossRef]
- Miller, N.J.; Sampson, J.; Candeias, L.P.; Bramley, P.M.; Rice-Evans, C.A. Antioxidant activities of carotenes and xanthophylls. FEBS Lett 1996, 384, 240–242. [Google Scholar] [CrossRef] [PubMed]
- Young, A.J.; Lowe, G.M. Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 2001, 385, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Mueller, L.; Boehm, V. Antioxidant activity of β-carotene compounds in different in vitro assays. Molecules 2011, 16, 1055–1069. [Google Scholar] [CrossRef]
- Böhm, V.; Puspitasari-Nienaber, N.L.; Ferruzzi, M.G.; Schwartz, S.J. Trolox equivalent antioxidant capacity of different geometrical isomers of alpha-carotene, beta-carotene, lycopene, and zeaxanthin. J Agric Food Chem. 2002, 50, 221–226. [Google Scholar] [CrossRef]
- Britton, G.; Liaaen-Jensen, S.; Pfander, H. Carotenoids. Volume 5: Nutrition and Health.; Birkhäuser-Verlag.: Berlin, 2009.
- Guerra, F.; Peñaloza, P.; Vidal, A.; Cautín, R.; Castro, M. Seed Maturity and Its In Vitro Initiation of Chilean Endemic Geophyte Alstroemeriapelegrina L. Horticulturae 2022, 8, 464. [Google Scholar] [CrossRef]
- Aros, D.; Barraza, P.; Peña-Neira, Á.; Mitsi, C.; Pertuzé, R. Seed Characterization and Evaluation of Pre-Germinative Barriers in the Genus Alstroemeria (Alstroemeriaceae). Seeds 2023, 2, 474–495. [Google Scholar] [CrossRef]
- Guerra, F.; Cautín, R.; Castro, M. In Vitro Micropropagation of the Vulnerable Chilean Endemic Alstroemeria pelegrina L. Horticulturae 2024, 10, 674. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Chen, M.; Yang, L.; Zhang, Y. Molecular and Metabolic Insights into Anthocyanin Biosynthesis for Spot Formation on Lilium leichtlinii var. maximowiczii Flower Petals. Int. J. Mol. Sci. 2023, 24, 1844. [Google Scholar] [CrossRef]
- Murillo, E.; Nagy, V.; Menchaca, D.; Deli, J.; Agócs, A. Changes in the Carotenoids of Zamia dressleri Leaves during Development. Plants 2024, 13, 1251. [Google Scholar] [CrossRef]
- Aurori, M.; Niculae, M.; Hanganu, D.; Pall, E.; Cenariu, M.; Vodnar, D.C.; Fiţ, N.; Andrei, S. The Antioxidant, Antibacterial and Cell-Protective Properties of Bioactive Compounds Extracted from Rowanberry (Sorbus aucuparia L.) Fruits In Vitro. Plants 2024, 13, 538. [Google Scholar] [CrossRef] [PubMed]
- Bhuker, A.; Malik, A.; Punia, H.; McGill, C.; Sofkova-Bobcheva, S.; Mor, V.S.; Singh, N.; Ahmad, A.; Mansoor, S. Probing the Phytochemical Composition and Antioxidant Activity of Moringa oleifera under Ideal Germination Conditions. Plants 2023, 12, 3010. [Google Scholar] [CrossRef] [PubMed]
- Alsharairi, N.A. Experimental Studies on the Therapeutic Potential of Vaccinium Berries in Breast Cancer—A Review. Plants 2024, 13, 153. [Google Scholar] [CrossRef] [PubMed]
- Kovarik, Z.; Radić, Z.; Berman, H.A.; Simeon-Rudolf, V.; Reiner, E.; Taylor, P. Acetylcholinesterase active centre and gorge conformations analysed by combinatorial mutations and enantiomeric phosphonates. Biochem. J. 2003, 373, 33–40. [Google Scholar] [CrossRef]
- Chatonnet, A.; Lockridge, O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem. J. 1989, 260, 625–634. [Google Scholar] [CrossRef]
- Howes, M.-J.R.; Perry, N.S.L.; Houghton, P.J. Plants with traditional uses and activities, relevant to the management of Alz-heimer’s disease and other cognitive disorders. Phyther. Res. 2003, 17, 1–18. [Google Scholar] [CrossRef]
- Release, S. Maestro, version 11.8. 2018, Schrodinger, LLC, New York. - References - Scientific Research Publishing.
- Giuffrida, D.; Cacciola, F.; Mapelli-Brahm, P.; Stinco, C.M.; Dugo, P.; Oteri, M.; Mondello, L.; Meléndez-Martínez, A.J. Free carotenoids and carotenoids esters composition in Spanish orange and mandarin juices from diverse varieties. Food Chem 2019, 300, 125139. [Google Scholar] [CrossRef]
- Official Methods of Analysis, 21st Edition (2019) - AOAC International.
- Vargas-Arana, G.; Merino-Zegarra, C.; del-Castillo, Á.M.R.; Quispe, C.; Viveros-Valdez, E.; Simirgiotis, M.J. Antioxidant, Antiproliferative and Anti-Enzymatic Capacities, Nutritional Analysis and UHPLC-PDA-MS Characterization of Ungurahui Palm Fruits (Oenocarpus bataua Mart) from the Peruvian Amazon. Antioxidants 2022, 11. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci Technol 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model Seeking for parameter-free double-hybrid functionals: The PBE0-DH model Accurate excitation energies from time-dependent density functional theory: Assessing the PBE0. Cit J Chem Phys 1999, 110, 2889. [Google Scholar] [CrossRef]
- Petersson, G.A.; Bennett, A.; Tensfeldt, T.G.; Al-Laham, M.A.; Shirley, W.A.; Mantzaris, J. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J Chem Phys 1988, 89, 2193–2218. [Google Scholar] [CrossRef]
- Frisch, A. Gaussian 09W Reference 2009.
- Greenblatt, H.M.; Kryger, G.; Lewis, T.; Silman, I.; Sussman, J.L. Structure of acetylcholinesterase complexed with (-)-galanthamine at 2.3 Å resolution. FEBS Lett 1999, 463, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Nachon, F.; Carletti, E.; Ronco, C.; Trovaslet, M.; Nicolet, Y.; Jean, L.; Renard, P.Y. Crystal structures of human cholinesterases in complex with huprine W and tacrine: Elements of specificity for anti-Alzheimer’s drugs targeting acetyl- and butyrylcholinesterase. Biochem J 2013, 453, 393–399. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Sussman, J.L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science (80-) 1991, 253, 872–879. [Google Scholar] [CrossRef]
- Silman, I.; Harel, M.; Axelsen, P.; Raves, M.; Sussman, J. Three-dimensional structures of acetylcholinesterase and of its complexes with anticholinesterase agents. In Proceedings of the Structure, Mechanism and Inhibition of Neuroactive Enzymes; Portland Press Limited., 1994; Vol. 22, pp. 745–749.
- Nicolet, Y.; Lockridge, O.; Masson, P.; Fontecilla-Camps, J.C.; Nachon, F. Crystal Structure of Human Butyrylcholinesterase and of Its Complexes with Substrate and Products. J Biol Chem 2003, 278, 41141–41147. [Google Scholar] [CrossRef]
- Tallini, L.R.; Bastida, J.; Cortes, N.; Osorio, E.H.; Theoduloz, C.; Schmeda-Hirschmann, G. Cholinesterase inhibition activity, alkaloid profiling and molecular docking of chilean rhodophiala (Amaryllidaceae). Molecules 2018, 23, 1–27. [Google Scholar] [CrossRef]
- Sherman, W.; Day, T.; Jacobson, M.P.; Friesner, R.A.; Farid, R. Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 2006, 49, 534–553. [Google Scholar] [CrossRef]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 2006, 49, 6177–6196. [Google Scholar] [CrossRef]
- PyMOL. Available online: Pyomol.org (accessed on 24 October 2024).








| Compound |
Binding energy (kcal/mol) Acetylcholinesterase |
Binding energy (kcal/mol) Butyrylcholinesterase |
Binding energy (kcal/mol) Glucosidase |
Binding energy (kcal/mol) α-Amilase |
| Peonidin 3-O-glucose | -14.837 | -12.461 | -15.462 | -8.597 |
| Peonidin 3-O-rutinose | -15.024 | -13.129 | -15.697 | -11.606 |
| Malvidin 3-O-glucose | -15.793 | -12.944 | -16.176 | -9.793 |
| Malvidin 3-O-rutinose | -11.632 | -13.472 | -12.436 | -14.120 |
| Hydroxyferulic acid | -8.647 | -6.753 | -8.017 | -5.147 |
| Feruloyl-caffeoyl-quinic acid | -10.068 | -10.973 | -10.555 | -7.167 |
| Quercetin-3-O-glucoside | -13.287 | -12.808 | -13.390 | -11.191 |
| Isorhamnetin 3-O-rutinoside | -15.658 | -13.922 | -11.544 | -10.766 |
| Galantamine | -12.989 | -7.125 | --------- | --------- |
| Acarbose | --------- | --------- | -18.591 | -12.626 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
