Submitted:
15 December 2025
Posted:
16 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction – Asthma: More Than Eosinophils
2. Materials and Methods
3. Results
3.1. Shifting Paradigms: From T2 High to T2 Low
3.2. Spotlight on T2 Low Asthma in Children
3.3. Beneath the Surface: Mechanism and Biomarkers
- 1.
-
Risk Factors and Pathophysiological Modulators of T2-Low Asthma in Children and Adolescents
- a.
- Environmental Exposures and Epithelial Injury as Early Drivers of T2-Low Asthma
- b. Vitamin D deficiency
- c. Hormonal and Pubertal Modulation of the T2-Low Asthma Phenotype
- 2.
- Potential Mechanisms of T2-Low Asthma
- a. Non-T2 Inflammation in the Lung: neutrophilic asthma
- b. Role of Neutrophils and neutrophil extracellular traps (NETs)in T2-Low Asthma
- c. Neutrophilic asthma
- d. Non-T2 Immune Pathways in T2-Low Asthma: Type 3 and Type 1 Immunity
- e. Type 3 (IL-17–Mediated) Immunity
- Promotion of neutrophilic inflammation via induction of granulocyte colony-stimulating factor (G-CSF) and neutrophil-attracting chemokines,
- Contribution to corticosteroid resistance [62],
- f. Type 1 (IFN–Mediated) Immunity
- However, increased IFN-γ expression has also been observed in patients with severe asthma, especially in those with steroid-resistant disease. Elevated IFN-γ levels in bronchoalveolar lavage fluid correlate with markers of airway inflammation and mast cell activation, such as increased CXCL10 expression [74] and IFN regulatory factor 5 (IRF5) [75].
- 3.
- Systemic Inflammation
- 4.
- Non-Inflammatory (Paucigranulocytic) Mechanisms
- 5.
- Biomakers
- 6.
- Clinical Manifestations: When Typical/Usual Signs Go Missing
- 7.
- Therapy Reimagined: Management Strategies for Low-T2 Asthma
- a. Corticosteroids
- b. Bronchodilators
- c. Biologic therapy
- d. Antibiotics
- e. Nonpharmacologic treatment (targeting preventable causes/traits)
4. Discussion - Toward Personalized Medicine: Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| T2 | type 2 |
| Ig | immunoglobulin |
| IL | interleukin |
| FeNO | Fraction of exhaled nitric oxide |
| NHANES | National Health and Nutrition Examination Survey |
| NO | nitrogen dioxide |
| O3 | ozone |
| PM2-5 | fine particular matter |
| TNF-α | tumor necrosis factor – α |
| RSV | respiratory syncicial virus |
| NETs | neutrophil extracellular traps |
| TSLP | thymic stromal lymphopoietin |
| HMGB1 | high-mobility group box 1 protein |
| MMP-9 | Matrix Metalloproteinase-9 |
| VEGF | Vascular Endothelial Growth Factor |
| fMLP | formyl-methionyl-leucyl-phenylalanine |
| ILCs | innate lymphoid cells |
| GCSF | granulocyte colony-stimulating factor |
| IRF 5 | regulatory factor 5 |
| ICS | inhaled corticosteroids |
| SABA | short-acting β₂-agonists |
| GINA | Global Initivative for Asthma |
| NICE | National Institute for Health and Care Exellence |
| LAMAs | long-acting muscarinic antagonists |
| LABAs | long-acting β₂-agonists |
| MABs | monoclonal antibodies |
Appendix A
| Study | Population / Setting | How T2-low or Non-T2 Defined | Reported Prevalence or Proportion of Th2-low asthma | Key Findings Relevant for Children with Th2-low asthma |
|---|---|---|---|---|
| NHANES 2007-2012 (USA, school-aged children 6-17 yrs) | 505 children with asthma | T2-low defined by AEC < 300 cells/µL and FeNO < 25 ppb (secondary thresholds also used) | 45.7% | female, older, overweight/obese |
| ALLIANCE cohort (“T2-high asthma phenotypes across lifespan”, 2022) | Mixed ages: preschool, school-age children, and adults with asthma (children total 473) | Phenotypes defined by blood eosinophils and allergen-specific IgE; “T2-low” = neither eosinophilia nor atopy; “T2-high” = eosinophilia + atopy; plus other categories like eosinophilia-only or atopy-only. | 0-2 yr – 64.5% 3-5 yr – 36.9% 6-8 yr – 20.5% 9-11 yr – 11.9% 12-14 yr – 18.5% 15-17 yr – 11.1% |
With increasing age, T2-low tends to decrease; atopy or eosinophilia tends to become more common. |
| “Pediatric Asthma in Hospitalized Children - Exploring airway inflammation” (2024-25) | Hospitalized children with asthma, total 351 children included which could be classified as the known type of airway inflammation. | Classification using blood eosinophil counts, specific IgE (sIgE), and age stratification; thresholds like EOS 150 (Standard 1), 300 (Standard 2), 470 (Standard 3) cells/μL and sIgE ≥0.7 kU/L; defining groups: “Only-atopy”, “Only-EOS”, “T2-high”, “T2-low” (neither eosinophilia nor atopy) | Standard 1 – 19.4% Standard 2 – 25.6% Standard 3- 28.2% |
With increasing age, T2-low tends to decrease; atopy or eosinophilia tends to become more common. Findings indicated that patients with T2-low airway inflammation could have a longer time from symptoms onset to admission, a longer time for hospitalization, a lower proportion of atopic dermatitis, and a higher proportion of siblings. |
| Category | Biomarker | Comments/Phenotype | References |
| Non eosinophilic/neutrophilic marker | Sputum neutrophils IL-8 (CXCL8) |
High neutrophil proportion associated with the T2-low phenotype Elevated sputum levels in more severe disease |
1,2 3 |
| Systemic inflammatory markers | IL-6 Leptin |
Sporadically elevated in children; reflects low-grade systemic inflammation Leptin modulates Th1/Th2 balance and Th17-driven non-T2 inflammation in obese children with asthma |
4, 5 6 |
| Exhaled breath markers | FeNO | Low values (<25 ppb) suggest absence of T2 inflammation | 7 |
| Molecular/cytokine markers | IL-17 | Th17 cytokine; associated with neutrophilic infiltration | 2 |
| Infectious/microbiome markers | Bacterial load in sputum BAL neutrophils+ proteomics |
Elevated in T2-low exacerbations Associated with infection and the T2-low phenotype |
2 8,9 |
References
- Lindsley, A.; Lugogo, N.; Reeh, K.; Spahn, J.; Parnes, J. Asthma Biologics Across the T2 Spectrum of Inflammation in Severe Asthma: Biomarkers and Mechanism of Action. J Asthma Allergy 2025, 18, 33–57. [Google Scholar] [CrossRef]
- Gyawali, B.; Georas, S.N.; Khurana, S. Biologics in severe asthma: a state-of-the-art review. Eur Respir Rev 2025, 34. [Google Scholar] [CrossRef]
- Lampalo, M.; Štajduhar, A.; Rnjak, D.; Ferara, N.; Stanić, H.S.; Popović-Grle, S. Effectiveness of biological therapy in severe asthma: a retrospective real-world study. Croat Med J 2025, 66, 3–12. [Google Scholar] [CrossRef]
- Hamada, Y.; Thomas, D.; McDonald, V.M.; Fricker, M.; Heaney, L.G.; Gibson, P. G. Clinical remission in severe asthma treated with biologics and macrolides: Definition, prevalence, associated factors, and future perspectives. Allergology International 2025. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Li, L.; Chen, R.; Shi, F. Unraveling heterogeneity and treatment of asthma through integrating multi-omics data. Frontiers in Allergy 2024, 5. [Google Scholar] [CrossRef]
- Kuruvilla, M.E.; Lee, F.E.-H.; Lee, G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol 2019, 56, 219–233. [Google Scholar] [CrossRef]
- Yue, M.; et al. Transcriptomic Profiles in Nasal Epithelium and Asthma Endotypes in Youth. JAMA 2025, 333, 307. [Google Scholar] [CrossRef]
- Hahn, Y.-S.; Eom, S.-Y. Reply to ‘Small airway dysfunction is common even in mild asthma, suggests increased exacerbation risk. J Allergy Clin Immunol Pract 2024, 12, 1947–1948. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Gorgojo, I.; Antolín-Amérigo, D.; Domínguez-Ortega, J.; Quirce, S. Non-eosinophilic asthma: current perspectives. J Asthma Allergy 2018, 11, 267–281. [Google Scholar] [CrossRef]
- Thomas, D.; Hamada, Y.; Gibson, P.; Brightling, C.E.; Castro, M.; Heaney, L. G. Diagnosis and Treatment Options for T2-Low Asthma. J Allergy Clin Immunol Pract 2025, 13, 1527–1539. [Google Scholar] [CrossRef] [PubMed]
- Shailesh, H.; Bhat, A.A.; Janahi, I. A. Obesity-Associated Non-T2 Mechanisms in Obese Asthmatic Individuals. Biomedicines 2023, 11, 2797. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Zhang, B.; Koeken, V.A.C.M.; Gupta, M.K.; Li, Y. Multi-Omics Approaches in Immunological Research. Front Immunol 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Muzaffar, N.; Baber, M.; Iqra Malik, H. Role of precision medicine on different endotypes of asthma. Exploration of Asthma & Allergy 2025, 3. [Google Scholar] [CrossRef]
- Rackemann, F. M. A working classification of asthma. Am J Med 1947, 3, 601–606. [Google Scholar] [CrossRef]
- Ricciardolo, F.L.M.; Guida, G.; Bertolini, F.; Di Stefano, A.; Carriero, V. Phenotype overlap in the natural history of asthma. European Respiratory Review 2023, 32, 220201. [Google Scholar] [CrossRef]
- WENZEL, S. E.; et al. Evidence That Severe Asthma Can Be Divided Pathologically into Two Inflammatory Subtypes with Distinct Physiologic and Clinical Characteristics. Am J Respir Crit Care Med 1999, 160, 1001–1008. [Google Scholar] [CrossRef]
- Anderson, G. P. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. The Lancet 2008, 372, 1107–1119. [Google Scholar] [CrossRef]
- Papadopoulos, N. G.; et al. Type 2 Inflammation and Asthma in Children: A Narrative Review. J Allergy Clin Immunol Pract 2024, 12, 2310–2324. [Google Scholar] [CrossRef] [PubMed]
- Kyriakopoulos, C.; Gogali, A.; Bartziokas, K.; Kostikas, K. Identification and treatment of T2-low asthma in the era of biologics. ERJ Open Res 2021, 7, 00309–02020. [Google Scholar] [CrossRef]
- Peri, F.; Amaddeo, A.; Badina, L.; Maschio, M.; Barbi, E.; Ghirardo, S. T2-Low Asthma: A Discussed but Still Orphan Disease. Biomedicines 2023, 11, 1226. [Google Scholar] [CrossRef]
- Polu, P. R.; Bikki, V. K. Asthma endotypes in flux: integrating type 1 and type 2 inflammation for biological therapy advancement. Journal of Asthma 2025, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Porpodis, K.; et al. T2-low severe asthma clinical spectrum and impact: The Greek PHOLLOW cross-sectional study. Clin Transl Allergy 2025, 15. [Google Scholar] [CrossRef]
- Han, Y.-Y.; Gaietto, K.; Yue, M.; Rosser, F.J.; Chen, W.; Celedón, J. C. Prevalence and Potential Risk Factors for T2-Low Asthma Among School-Aged Children in the National Health and Nutrition Examination Survey, 2007–2012. J Allergy Clin Immunol Pract 2025, 13, 2075–2082.e2. [Google Scholar] [CrossRef]
- Maison, N.; et al. T2-high asthma phenotypes across lifespan. European Respiratory Journal 2022, 60, 2102288. [Google Scholar] [CrossRef]
- Han, P.; Yin, J.; Zou, H.; Jiao, A.; Liu, Y.; Shen, K. Exploring the types of airway inflammation in hospitalized children with asthma. BMC Pediatr 2025, 25, 359. [Google Scholar] [CrossRef]
- Pecoraro, L.; et al. The Role of Environmental Exposures in Pediatric Asthma Pathogenesis: A Contemporary Narrative Review. Children 2025, 12, 1327. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.-Y.; Gaietto, K.; Yue, M.; Rosser, F.J.; Chen, W.; Celedón, J. C. Prevalence and Potential Risk Factors for T2-Low Asthma Among School-Aged Children in the National Health and Nutrition Examination Survey, 2007–2012. J Allergy Clin Immunol Pract 2025, 13, 2075–2082.e2. [Google Scholar] [CrossRef]
- Mishra, P.E.; Melén, E.; Koppelman, G.H.; Celedón, J. C. T2-low asthma in school-aged children: unacknowledged and understudied. Lancet Respir Med 2023, 11, 1044–1045. [Google Scholar] [CrossRef]
- Aghapour, M.; et al. Role of air pollutants in airway epithelial barrier dysfunction in asthma and COPD. European Respiratory Review 2022, 31, 210112. [Google Scholar] [CrossRef]
- Mthembu, N.; Ikwegbue, P.; Brombacher, F.; Hadebe, S. Respiratory Viral and Bacterial Factors That Influence Early Childhood Asthma. Frontiers in Allergy 2021, 2. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Huang, F.; Yao, W.; Xue, Z. The role of innate immune system in respiratory viral infection related asthma. Front Cell Infect Microbiol 2025, 15. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; et al. Microbial dysbiosis and childhood asthma development: Integrated role of the airway and gut microbiome, environmental exposures, and host metabolic and immune response. Front Immunol 2022, 13. [Google Scholar] [CrossRef]
- Kelly, M.S.; Bunyavanich, S.; Phipatanakul, W.; Lai, P.S. The Environmental Microbiome, Allergic Disease, and Asthma. J Allergy Clin Immunol Pract 2022, 10, 2206–2217.e1. [Google Scholar] [CrossRef]
- Aslam, R.; Herrles, L.; Aoun, R.; Pioskowik, A.; Pietrzyk, A. Link between gut microbiota dysbiosis and childhood asthma: Insights from a systematic review. Journal of Allergy and Clinical Immunology: Global 2024, 3, 100289. [Google Scholar] [CrossRef]
- Sung, M. Trends of vitamin D in asthma in the pediatric population for two decades: a systematic review. Clin Exp Pediatr 2023, 66, 339–347. [Google Scholar] [CrossRef]
- Zhou, Y.; et al. Evaluating the effects of vitamin D Level on airway obstruction in two asthma endotypes in humans and in two mouse models with different intake of vitamin D during early-life. Front Immunol 2023, 14. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, J.; Sun, X. A Meta-Analysis on Vitamin D Supplementation and Asthma Treatment. Front Nutr 2022, 9. [Google Scholar] [CrossRef]
- Fröhlich, M.; et al. Is there a sex-shift in prevalence of allergic rhinitis and comorbid asthma from childhood to adulthood? A meta-analysis. Clin Transl Allergy 2017, 7, 44. [Google Scholar] [CrossRef]
- Keselman, A.; Heller, N. Estrogen Signaling Modulates Allergic Inflammation and Contributes to Sex Differences in Asthma. Front Immunol 2015, 6. [Google Scholar] [CrossRef]
- Newcomb, D. C.; et al. Estrogen and progesterone decrease let-7f microRNA expression and increase IL-23/IL-23 receptor signaling and IL-17A production in patients with severe asthma. Journal of Allergy and Clinical Immunology 2015, 136, 1025–1034.e11. [Google Scholar] [CrossRef]
- Borrelli, R.; et al. Sex-Based Differences in Asthma: Pathophysiology, Hormonal Influence, and Genetic Mechanisms. Int J Mol Sci 2025, 26, 5288. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.-J.; Lai, K.-P.; Zeng, W.; Chuang, K.-H.; Altuwaijri, S.; Chang, C. Androgen Receptor Influences on Body Defense System via Modulation of Innate and Adaptive Immune Systems. Am J Pathol 2012, 181, 1504–1512. [Google Scholar] [CrossRef]
- Vijeyakumaran, M.; et al. Dual activation of estrogen receptor alpha and glucocorticoid receptor upregulate CRTh2-mediated type 2 inflammation; mechanism driving asthma severity in women? Allergy 2023, 78, 767–779. [Google Scholar] [CrossRef]
- Zhou, Z.; et al. Estrogen decreases tight junction protein ZO-1 expression in human primary gut tissues. Clinical Immunology 2017, 183, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, J. G.; et al. Sex differences in paediatric airway anatomy. Exp Physiol 2020, 105, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, A.M.; Chipps, B.E.; Holguin, F.; Woodruff, P. G. T2-‘Low’ Asthma: Overview and Management Strategies. J Allergy Clin Immunol Pract 2020, 8, 452–463. [Google Scholar] [CrossRef]
- Hudey, S.N.; Ledford, D.K.; Cardet, J.C. Mechanisms of non-type 2 asthma. Curr Opin Immunol 2020, 66, 123–128. [Google Scholar] [CrossRef]
- Chen, T.; et al. Receptor-Mediated NETosis on Neutrophils. Front Immunol 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Iwaszko, I.; Specjalski, K.; Chełmińska, M.; Niedoszytko, M. Neutrophilic Asthma—From Mechanisms to New Perspectives of Therapy. J Clin Med 2025, 14, 7137. [Google Scholar] [CrossRef]
- Li, Y.; et al. Extracellular RNAs from lung cancer cells activate epithelial cells and induce neutrophil extracellular traps. Int J Oncol 2019. [Google Scholar] [CrossRef]
- Lachowicz-Scroggins, M.E.; et al. Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. Am J Respir Crit Care Med 2019, 199, 1076–1085. [Google Scholar] [CrossRef]
- Pham, D. L.; et al. Neutrophil autophagy and extracellular DNA traps contribute to airway inflammation in severe asthma. Clinical & Experimental Allergy 2017, 47, 57–70. [Google Scholar] [CrossRef]
- Liang, Y.; et al. HMGB1 binding to receptor for advanced glycation end products enhances inflammatory responses of human bronchial epithelial cells by activating p38 MAPK and ERK1/2. Mol Cell Biochem 2015, 405, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Teijeira, Á.; et al. CXCR1 and CXCR2 Chemokine Receptor Agonists Produced by Tumors Induce Neutrophil Extracellular Traps that Interfere with Immune Cytotoxicity. Immunity 2020, 52, 856–871.e8. [Google Scholar] [CrossRef]
- Tcherniuk, S.; et al. Formyl Peptide Receptor 2 Plays a Deleterious Role During Influenza A Virus Infections. Journal of Infectious Diseases 2016, 214, 237–247. [Google Scholar] [CrossRef]
- Toussaint, M.; et al. Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nat Med 2017, 23, 681–691. [Google Scholar] [CrossRef]
- Ntinopoulou, M.; et al. Ιnterleukin-17A-Enriched Neutrophil Extracellular Traps Promote Immunofibrotic Aspects of Childhood Asthma Exacerbation. Biomedicines 2023, 11, 2104. [Google Scholar] [CrossRef] [PubMed]
- Chang, H. S.; et al. Neutrophilic inflammation in asthma: mechanisms and therapeutic considerations. Expert Rev Respir Med 2017, 11, 29–40. [Google Scholar] [CrossRef]
- Teague, W. G.; et al. Lung Lavage Granulocyte Patterns and Clinical Phenotypes in Children with Severe, Therapy-Resistant Asthma. J Allergy Clin Immunol Pract 2019, 7, 1803–1812.e10. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J. L.; et al. Airway dysbiosis: Haemophilus influenzae and Tropheryma in poorly controlled asthma. European Respiratory Journal 2016, 47, 792–800. [Google Scholar] [CrossRef]
- Ackland, J.; et al. Nontypeable Haemophilus influenzae infection of pulmonary macrophages drives neutrophilic inflammation in severe asthma. Allergy 2022, 77, 2961–2973. [Google Scholar] [CrossRef]
- Diver, S.; et al. Relationship between inflammatory status and microbial composition in severe asthma and during exacerbation. Allergy 2022, 77, 3362–3376. [Google Scholar] [CrossRef]
- Ouyang, S.; Liu, C.; Xiao, J.; Chen, X.; Lui, A.C.; Li, X. Targeting IL-17A/glucocorticoid synergy to CSF3 expression in neutrophilic airway diseases. JCI Insight 2020, 5. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, N.; Nabe, T.; Yoshino, S. IL-17A Promotes the Exacerbation of IL-33–Induced Airway Hyperresponsiveness by Enhancing Neutrophilic Inflammation via CXCR2 Signaling in Mice. The Journal of Immunology 2014, 192, 1372–1384. [Google Scholar] [CrossRef]
- Kudo, M.; et al. IL-17A produced by αβ T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction. Nat Med 2012, 18, 547–554. [Google Scholar] [CrossRef]
- Wilson, R.H.; Whitehead, G.S.; Nakano, H.; Free, M.E.; Kolls, J.K.; Cook, D. N. Allergic Sensitization through the Airway Primes Th17-dependent Neutrophilia and Airway Hyperresponsiveness. Am J Respir Crit Care Med 2009, 180, 720–730. [Google Scholar] [CrossRef]
- Rahmawati, S.F.; Velde, M.T.; Kerstjens, H.A.M.; Dömling, A.S.S.; Groves, M.R.; Gosens, R. Pharmacological Rationale for Targeting IL-17 in Asthma. Frontiers in Allergy 2021, 2. [Google Scholar] [CrossRef]
- Busse, W.W.; et al. Randomized, Double-Blind, Placebo-controlled Study of Brodalumab, a Human Anti–IL-17 Receptor Monoclonal Antibody, in Moderate to Severe Asthma. Am J Respir Crit Care Med 2013, 188, 1294–1302. [Google Scholar] [CrossRef]
- Choy, D. F.; et al. T H 2 and T H 17 inflammatory pathways are reciprocally regulated in asthma. Sci Transl Med 2015, 7. [Google Scholar] [CrossRef] [PubMed]
- Fang, D.; Healy, A.; Zhu, J. Differential regulation of lineage-determining transcription factor expression in innate lymphoid cell and adaptive T helper cell subsets. Front Immunol 2023, 13. [Google Scholar] [CrossRef]
- Fensterl, V.; Sen, G. C. Interferons and viral infections. BioFactors 2009, 35, 14–20. [Google Scholar] [CrossRef]
- Parker, D.; Prince, A. Type I interferon response to extracellular bacteria in the airway epithelium. Trends Immunol 2011, 32, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Wark, P. A. B.; et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med 2005, 201, 937–947. [Google Scholar] [CrossRef]
- Edwards, M. R.; et al. Impaired innate interferon induction in severe therapy resistant atopic asthmatic children. Mucosal Immunol 2013, 6, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, M.; et al. Severe asthma in humans and mouse model suggests a CXCL10 signature underlies corticosteroid-resistant Th1 bias. JCI Insight 2017, 2. [Google Scholar] [CrossRef]
- Oriss, T. B.; et al. IRF5 distinguishes severe asthma in humans and drives Th1 phenotype and airway hyperreactivity in mice. JCI Insight 2017, 2. [Google Scholar] [CrossRef]
- McCrae, C.; et al. INEXAS: A Phase 2 Randomized Trial of On-demand Inhaled Interferon Beta-1a in Severe Asthmatics. Clinical & Experimental Allergy 2021, 51, 273–283. [Google Scholar] [CrossRef]
- Wisniewski, J. A.; et al. TH1 signatures are present in the lower airways of children with severe asthma, regardless of allergic status. Journal of Allergy and Clinical Immunology 2018, 141, 2048–2060.e13. [Google Scholar] [CrossRef]
- Thomas, D.; Hamada, Y.; Gibson, P.; Brightling, C.E.; Castro, M.; Heaney, L. G. Diagnosis and Treatment Options for T2-Low Asthma. J Allergy Clin Immunol Pract 2025, 13, 1527–1539. [Google Scholar] [CrossRef] [PubMed]
- Althoff, M.D.; Gaietto, K.; Holguin, F.; Forno, E. Obesity-related Asthma: A Pathobiology-based Overview of Existing and Emerging Treatment Approaches. Am J Respir Crit Care Med 2024, 210, 1186–1200. [Google Scholar] [CrossRef]
- Miethe, S.; Karsonova, A.; Karaulov, A.; Renz, H. Obesity and asthma. Journal of Allergy and Clinical Immunology 2020, 146, 685–693. [Google Scholar] [CrossRef]
- Rastogi, D.; Holguin, F. Metabolic Dysregulation, Systemic Inflammation, and Pediatric Obesity-related Asthma. Ann Am Thorac Soc 2017, 14 Supplement_5, S363–S367. [Google Scholar] [CrossRef] [PubMed]
- Khan, U.I.; Rastogi, D.; Isasi, C.R.; Coupey, S. M. Independent and Synergistic Associations of Asthma and Obesity with Systemic Inflammation in Adolescents. Journal of Asthma 2012, 49, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Miyasaka, T.; Dobashi-Okuyama, K.; Kawakami, K.; Masuda-Suzuki, C.; Takayanagi, M.; Ohno, I. Sex Plays a Multifaceted Role in Asthma Pathogenesis. Biomolecules 2022, 12, 650. [Google Scholar] [CrossRef]
- Secco Rosário, C.; Alves Cardozo, C.; Chong Neto, H.J.; Rosário Filho, N. A. Do gender and puberty influence allergic diseases? Allergol Immunopathol (Madr) 2021, 49, 122–125. [Google Scholar] [CrossRef]
- Trivedi, M.; Denton, E. Asthma in Children and Adults—What Are the Differences and What Can They Tell us About Asthma? Front Pediatr 2019, 7. [Google Scholar] [CrossRef]
- Choi, I.S. Gender-Specific Asthma Treatment. Allergy Asthma Immunol Res 2011, 3, 74. [Google Scholar] [CrossRef]
- Lezmi, G.; et al. Airway Remodeling in Preschool Children with Severe Recurrent Wheeze. Am J Respir Crit Care Med 2015, 192, 164–171. [Google Scholar] [CrossRef]
- Robinson, P. F. M.; et al. Recurrent Severe Preschool Wheeze: From Prespecified Diagnostic Labels to Underlying Endotypes. Am J Respir Crit Care Med 2021, 204, 523–535. [Google Scholar] [CrossRef]
- Holguin, F.; et al. L-Citrulline increases nitric oxide and improves control in obese asthmatics. JCI Insight 2019, 4. [Google Scholar] [CrossRef] [PubMed]
- Tliba, O.; Panettieri, R. A. Paucigranulocytic asthma: Uncoupling of airway obstruction from inflammation. Journal of Allergy and Clinical Immunology 2019, 143, 1287–1294. [Google Scholar] [CrossRef]
- Nguyen, D.-V.; Linderholm, A.; Haczku, A.; Kenyon, N. Glucagon-like peptide 1: A potential anti-inflammatory pathway in obesity-related asthma. Pharmacol Ther 2017, 180, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Dragunas, G.; et al. Cholinergic neuroplasticity in asthma driven by TrkB signaling. The FASEB Journal 2020, 34, 7703–7717. [Google Scholar] [CrossRef]
- Braun, A.; Quarcoo, D.; Schulte-Herbrüggen, O.; Lommatzsch, M.; Hoyle, G.; Renz, H. Nerve Growth Factor Induces Airway Hyperresponsiveness in Mice. Int Arch Allergy Immunol 2001, 124, 205–207. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Miller, M.; Unno, H.; Rosenthal, P.; Sanderson, M.J.; Broide, D. H. Orosomucoid-like 3 (ORMDL3) upregulates airway smooth muscle proliferation, contraction, and Ca2+ oscillations in asthma. Journal of Allergy and Clinical Immunology 2018, 142, 207–218.e6. [Google Scholar] [CrossRef]
- Ono, J.G.; et al. Decreased sphingolipid synthesis in children with 17q21 asthma–risk genotypes. Journal of Clinical Investigation 2020, 130, 921–926. [Google Scholar] [CrossRef]
- Balenga, N.A.; Jester, W.; Jiang, M.; Panettieri, R.A.; Druey, K. M. Loss of regulator of G protein signaling 5 promotes airway hyperresponsiveness in the absence of allergic inflammation. Journal of Allergy and Clinical Immunology 2014, 134, 451–459.e11. [Google Scholar] [CrossRef]
- Ntontsi, P.; et al. Clinical, functional and inflammatory characteristics in patients with paucigranulocytic stable asthma: Comparison with different sputum phenotypes. Allergy 2017, 72, 1761–1767. [Google Scholar] [CrossRef]
- Zounemat Kermani, N.; et al. Type 2-low asthma phenotypes by integration of sputum transcriptomics and serum proteomics. Allergy 2021, 76, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, J.; et al. Comorbidity in severe asthma requiring systemic corticosteroid therapy: cross-sectional data from the Optimum Patient Care Research Database and the British Thoracic Difficult Asthma Registry. Thorax 2016, 71, 339–346. [Google Scholar] [CrossRef]
- Busby, J.; Khoo, E.; Pfeffer, P.E.; Mansur, A.H.; Heaney, L. G. The effects of oral corticosteroids on lung function, type-2 biomarkers and patient-reported outcomes in stable asthma: A systematic review and meta-analysis. Respir Med 2020, 173, 106156. [Google Scholar] [CrossRef]
- Heaney, L.G.; et al. Composite type-2 biomarker strategy versus a symptom–risk-based algorithm to adjust corticosteroid dose in patients with severe asthma: a multicentre, single-blind, parallel group, randomised controlled trial. Lancet Respir Med 2021, 9, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Wongsa, C.; et al. Subtype prevalence and treatment implication in adolescents and adults with mild-to-moderate asthma: Systematic review and meta-analysis. Journal of Allergy and Clinical Immunology: Global 2025, 4, 100366. [Google Scholar] [CrossRef]
- Woodruff, P. G.; et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proceedings of the National Academy of Sciences 2007, 104, 15858–15863. [Google Scholar] [CrossRef] [PubMed]
- Gans, M.D.; Gavrilova, T. Understanding the immunology of asthma: Pathophysiology, biomarkers, and treatments for asthma endotypes. Paediatr Respir Rev 2020, 36, 118–127. [Google Scholar] [CrossRef]
- Rupani, H.; et al. Comprehensive Characterization of Difficult-to-Treat Asthma Reveals Near Absence of T2-Low Status. J Allergy Clin Immunol Pract 2023, 11, 2812–2821.e4. [Google Scholar] [CrossRef]
- Venkatesan, P. 2025 GINA report for asthma. Lancet Respir Med 2025, 13, e41–e42. [Google Scholar] [CrossRef] [PubMed]
- Gruffydd-Jones, K. BTS/NICE/SIGN guideline for asthma 2024: Diagnosis, monitoring and chronic asthma management. How does this compare to GINA 2024? NPJ Prim Care Respir Med 2025, 35, 22. [Google Scholar] [CrossRef]
- McDowell, P.J.; Busby, J.; Heaney, L. G. Asthma Exacerbations in Severe Asthma: Why Systemic Corticosteroids May not Always Be the Best Treatment Option. Curr Treat Options Allergy 2023, 10, 53–63. [Google Scholar] [CrossRef]
- Ricciardolo, F.L.M.; Carriero, V.; Bertolini, F. Which Therapy for Non-Type(T)2/T2-Low Asthma. J Pers Med 2021, 12, 10. [Google Scholar] [CrossRef]
- Bolner, G.; et al. Long-acting muscarinic antagonists as add-on treatment for asthma in children under age 12: a systematic review and meta-analysis. Paediatr Respir Rev 2025. [Google Scholar] [CrossRef]
- Santamaria, F.; Ziello, C.; Lorello, P.; Bouchè, C.; Borrelli, M. Update on Long-Acting Anticholinergics in Children and Adolescents With Difficult and Severe Asthma. Front Pediatr 2022, 10. [Google Scholar] [CrossRef]
- Guilbert, T. W.; Busse, W. How Has the Biologic Revolution Improved Patient Care? J Allergy Clin Immunol Pract 2023, 11, 2683–2685. [Google Scholar] [CrossRef]
- Shouse, G. Bispecific antibodies for the treatment of hematologic malignancies: The magic is T-cell redirection. Blood Rev 2025, 69, 101251. [Google Scholar] [CrossRef]
- Melscoet, L.; Khayath, N.; Migueres, N.; Goltzene, M.-A.; Meyer, N.; de Blay, F. Severe non-atopic asthma: omalizumab can reduce severe asthma exacerbations. Journal of Asthma 2023, 60, 881–889. [Google Scholar] [CrossRef]
- Flood-Page, P.; et al. A Study to Evaluate Safety and Efficacy of Mepolizumab in Patients with Moderate Persistent Asthma. Am J Respir Crit Care Med 2007, 176, 1062–1071. [Google Scholar] [CrossRef]
- Delgado, J.; Dávila, I.; Domínguez-Ortega, J. Clinical Recommendations for the Management of Biological Treatments in Severe Asthma Patients: A Consensus Statement. J Investig Allergol Clin Immunol 2021, 31, 36–43. [Google Scholar] [CrossRef]
- Caminati, M.; Vatrella, A.; Rogliani, P.; Carpagnano, E.; Spanevello, A.; Senna, G. Tezepelumab for severe asthma: elevating current practice to recognize epithelial driven profiles. Respir Res 2024, 25, 367. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. A Study to Investigate the Efficacy and Safety of Tezepelumab Compared With Placebo in Children 5 to <12 Years Old With Severe Asthma (HORIZON). Identifier: NCT06023589. Updated 2025. Available online: https://clinicaltrials.gov/study/NCT06023589.
- Kardas, G.; Panek, M.; Kuna, P.; Damiański, P.; Kupczyk, M. Monoclonal antibodies in the management of asthma: Dead ends, current status and future perspectives. Front Immunol 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A.; Simon, A.; van der Meer, J. W. M. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 2012, 11, 633–652. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, J. J.; et al. Azithromycin for Poorly Controlled Asthma in Children. Chest 2022, 161, 1456–1464. [Google Scholar] [CrossRef]
- Pan, X.; et al. The efficacy and safety of azithromycin in treatment for childhood asthma: A systematic review and meta-analysis. Pediatr Pulmonol 2022, 57, 631–639. [Google Scholar] [CrossRef]
- Sun, J.; Li, Y. Long-term, low-dose macrolide antibiotic treatment in pediatric chronic airway diseases. Pediatr Res 2022, 91, 1036–1042. [Google Scholar] [CrossRef]
- Thomas, D.; Gibson, P.G. Long-Term, Low-Dose Azithromycin for Uncontrolled Asthma in Children. Chest 2022, 162, 27–29. [Google Scholar] [CrossRef]
- Esteban-Gorgojo, I.; Antolín-Amérigo, D.; Domínguez-Ortega, J.; Quirce, S. Non-eosinophilic asthma: current perspectives. J Asthma Allergy 2018, 11, 267–281. [Google Scholar] [CrossRef]
- Peri, F.; Amaddeo, A.; Badina, L.; Maschio, M.; Barbi, E.; Ghirardo, S. T2-Low Asthma: A Discussed but Still Orphan Disease. Biomedicines 2023, 11, 1226. [Google Scholar] [CrossRef]
- Alexis, N.E.; Carlsten, C. Interplay of air pollution and asthma immunopathogenesis: A focused review of diesel exhaust and ozone. Int Immunopharmacol 2014, 23, 347–355. [Google Scholar] [CrossRef]
- Scotney, E.; Fleming, L.; Saglani, S.; Sonnappa, S.; Bush, A. Advances in the pathogenesis and personalised treatment of paediatric asthma. BMJ Medicine 2023, 2, e000367. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-W.; et al. Benchmarking omics-based prediction of asthma development in children. Respir Res 2023, 24, 63. [Google Scholar] [CrossRef] [PubMed]
- Yue, M.; Tao, S.; Gaietto, K.; Chen, W. Omics approaches in asthma research: Challenges and opportunities. Chinese Medical Journal Pulmonary and Critical Care Medicine 2024, 2, 1–9. [Google Scholar] [CrossRef]
- Plaza, V.; Cañete, C.; Domingo, C.; Rivera, C.M.; Muñoz, X. Efficacy and Potential Positioning of Tezepelumab in the Treatment of Severe Asthma. Open Respiratory Archives 2023, 5, 100231. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, P.E.; Rupani, H.; De Simoni, A. Bringing the treatable traits approach to primary care asthma management. Frontiers in Allergy 2023, 4. [Google Scholar] [CrossRef]
- Farinha, I.; Gibson, P.G.; McDonald, V.M.; Heaney, L. G. Treatable Traits as a Pathway to Remission in Asthma. J Allergy Clin Immunol Pract 2025, 13, 1542–1552. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
