Submitted:
26 January 2026
Posted:
27 January 2026
You are already at the latest version
Abstract
In this study, the dyeing kinetics of polyamide fabrics with acid dyes, Telon Blue M2R, under both conventional and microwave-assisted heating conditions were comprehensively investigated. While the conventional dyeing reaction was completed in 30 minutes, microwave-assisted dyeing was performed in the microwave device for 10 minutes. Dyeing kinetics were investigated as a function of reaction time, reaction concentration and dyeing temperatures. The K/S values (color depth) of the dyed fabrics were correlated with the concentration. A significant reduction in the dyeing process time for polyamide fabric was observed with microwave heating compared to the conventional method. Kinetic analysis revealed that the PSO kinetic model provides a better fit to the experimental data on the diffusion process of acid dye in polyamide fabrics, as evidenced by higher correlation coefficients (R²) compared to the PFO model. The activation energy of the reaction in dyeing was found to be 63.27 kJ/mol, and the Arrhenius constant was determined as 7,20 x 1010 L/g.min in conventional media and 18,70 x 1010 L/g.min in microwave media. The Arrhenius factor in the microwave medium was more than two times higher than in the conventional one.

Keywords:
1. Introduction
2. Materials and Methods
2.1. Microwave-Assisted Dyeing Setup
2.2. Dyeing Procedure
2.3. Dyeing Kinetics Analysis
3. Results and Discussion
3.1. Effect of Conventional Heating on Dyeing Kinetics
| K/S (Color Strength) | 50 °C | 60 °C | 70 °C | 80 °C | 95 °C |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 2,151 | 3,745 | 6,980 | 9,000 | 11,820 |
| 10 | 3,671 | 5,764 | 9,527 | 11,270 | 13,228 |
| 15 | 4,802 | 7,026 | 10,846 | 12,276 | 13,750 |
| 20 | 5,675 | 7,889 | 11,653 | 12,867 | 14,063 |
| 25 | 6,371 | 8,518 | 12,208 | 13,235 | 14,247 |
| 30 | 6,938 | 8,995 | 12,629 | 13,520 | 14,371 |
3.2. Effect of Microwave Power on Dyeing Kinetics
| K/S (ColorStrength) | 50 °C | 60 °C | 70 °C | 80 °C | 95 °C |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1,399 | 3,085 | 2,892 | 8,308 | 11,530 |
| 2 | 2,559 | 4,330 | 5,134 | 9,710 | 12,418 |
| 3 | 3,521 | 5,280 | 6,870 | 10,637 | 12,968 |
| 4 | 4,319 | 6,077 | 8,216 | 11,347 | 13,374 |
| 5 | 4,981 | 6,778 | 9,259 | 11,931 | 13,697 |
| 6 | 5,530 | 7,411 | 10,068 | 12,431 | 13,967 |
| 7 | 5,985 | 7,991 | 10,694 | 12,869 | 14,199 |
| 8 | 6,363 | 8,530 | 11,179 | 13,262 | 14,403 |
| 9 | 6,676 | 9,036 | 11,555 | 13,618 | 14,586 |
| 10 | 6,936 | 9,514 | 11,847 | 13,944 | 14,751 |
3.3. Comparison of Microwave and Conventional Heating on Dyeing Kinetics
4. Conclusions
- ɣ : The number of adjacent jump sites (The number of possible neighboring positions to which an atom or molecule can migrate)
- λ : The jump distance (The average distance an atom or molecule travels in a single diffusion jump)
- Γ : The jump frequency (The rate at which an atom or molecule makes successful jumps from one site to another) [48].
Acknowledgments
References
- Böcek, Nevin (2001), Investigation of Fiber and Temperature Interaction in Dyeing of Synthetic Fibers, [Master's thesis, Sakarya University]. YÖK National Thesis Center. https://tez.yok.gov.tr/UlusalTezMerkezi/.
- Haggag, K.; El-Molla, M. M.; Ahmed, K. A. Dyeing of Nylon 66 Fabrics Using Disperse Dyes by Microwave Irradiation Technology. International Research Journal of Pure & Applied Chemistry 2015, 8(2), 103–111. [Google Scholar] [CrossRef]
- Atav, R.; Soysal, S.; Haji, Aminoddin. Environmentally Friendly Coloration of Polyamide Fabrics with the Use of Natural Dyes: A Study Including Results of Industrial Scale Applications. In Fibers and Polymers; 2024; Volume 25, pp. pages 2223–2232. [Google Scholar] [CrossRef]
- Ghaheh, F.S.; Razbin, M.; Tehrani, M.; Vayghan, L.Z.A.; Sadrjahani, M. Modeling and optimization of dyeing process of polyamide 6 and woolen fabrics with plum-tree leaves using artificial intelligence. Scientific Reports 2024, volume 14, Article number, 15067. [Google Scholar] [CrossRef] [PubMed]
- Usluoğlu, A.; Teker, M. Investigation of Dyeing Kinetics of Cotton Fiber with C.I. Reactive Yellow 138:1 Dyestuff in Microwave Environment. Journal of the Institute of Science of Yüzüncü Yıl University 2024, Vol.29, 119. [Google Scholar] [CrossRef]
- Yiğit, E.A.; Teker, M. Disperse Dyeability of Polypropylene Fibers via Microwave and Ultrasonic Energy - Polymer and Polymer Composites; 2011; Vol.19, p. 711. ISSN 1478-2391. [Google Scholar] [CrossRef]
- Zhai, X.; Ma, J.; Wu, Y.; Niu, T.; Sun, D.; Fang, L.; Zhang, X. Investigation on dyeing mechanism of modified cotton fiber. RSC Adv. 2022, vol. 12(no. 49), 31596–31607. [Google Scholar] [CrossRef] [PubMed]
- Haggag, K.; El-Molla, M. M.; Mahmoued, Z. M. Dyeing of Cotton Fabric using Reactive Dyes by Microwave Irradiation Technique. Indian J. Fibre Text. Res. 2014, vol. 39(no. 4), 406–410. [Google Scholar] [CrossRef]
- Rahman, M. M.; Ahmed, M.; Jalil, M. A.; Mondal, M. I. H. The effect of microwave preheating on the dyeing of wool fabric with a reactive dye. Journal of Applied Polymer Science 2008, 108(1), 314–318. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, J.; Wang, J.; Wang, J.; Meng, J. A novel process of dyeing wool with acid dyes under microwave irradiation. Journal of Applied Polymer Science 2009, 113(5), 2798–2803. [Google Scholar] [CrossRef]
- Kim, S. S.; Leem, S. G.; Ghim, H. D.; Kim, J. H.; Lyoo, W. S. Microwave Heat Dyeing of Polyester Fabric. Fibers and Polymers 2003, 4(4), 204–209. [Google Scholar] [CrossRef]
- Ghazal, H. A. Microwave Irradiation as A New Novel Dyeing of Polyamide 6 Fabrics by Reactive Dyes. Egyptian Journal of Chemistry 2020, 63(6), 2125–2132. [Google Scholar] [CrossRef]
- Kocak, D.; Akalin, M.; Merdan, N.; Sahinbaskan, B.Y. Effect of Microwave Energy on Disperse Dyeability of Polypropylene Fibres. Marmara Journal of Pure and Applied Sciences 2015, Vol. 27, Special(Issue-1), 27–31. [Google Scholar] [CrossRef]
- Haggag, K.; Hanna, H.L.; Youssef, B.M.; El-Shimy, N.S. Dyeing Polyester With Microwave Heating Using Disperse Dyestuffs. American Dyestuff Reporter 1995, 84, 22–36. [Google Scholar]
- Büyükakıncı, Y. B.; Karada, R.; Guzel, E.T. Organic cotton fabric dyed with dyer's oak and barberry dye by microwave irradiation and conventional methods. Industria Textila 2021, Vol No, 72, 30–38. [Google Scholar] [CrossRef]
- Gouda, M.; Haggag, K. M.; Boraie, W. E; Aljaafari, A.; Al-Faiyz, Y. Synthesis and Characterization of Inorganic Pigment Nanoparticles for Textile Coloration Using Microwave Techniques. AATCC Journal of ResearchVolume 2016, Volume 3(Issue 3), 1–8. [Google Scholar] [CrossRef]
- Kale, M.J.; Bhat, N.V. Effect of microwave pretreatment on the dyeing behaviour of polyester fabric. Society of Dyers and Colourists, Color. Technol. 127, 365–371. [CrossRef]
- Popescu, V.; Astanei, D.G.; Burlica, R.; Popescu, A.; Munteanu, C.; Ciolacu, F.; Ursache, M.; Ciobanu, L.; Cocean, A. Sustainable and cleaner microwave-assisted dyeing process for obtaining eco-friendly and fluorescent acrylic knitted fabrics. Journal of Cleaner Production Volume 2019, Volume 232, Pages 451–461. [Google Scholar] [CrossRef]
- Keglevich, G. The Application of Microwaves in the Esterification of P-Acids. Current Microwave Chemistry 2022, *9*(2), 62–64. [Google Scholar] [CrossRef]
- Ghaffar, A.; Adeel, S.; Habib, N.; Jalal, F.; Ul-Haq, A.; Munir, B.; Ahmad, A.; Jahangeer, M.; Jamil, Q. Effects of Microwave Radiation on Cotton Dyeing with Reactive Blue 21 Dye. Pol. J. Environ. Stud. 2019, Vol. 28(No. 3), 1687–1691. [Google Scholar] [CrossRef]
- Al-Etaibi, A.M.; El-Apasery, M. A, Microwave-Assisted Synthesis of Azo Disperse Dyes for Dyeing Polyester Fabrics: Our Contributions over the Past Decade. Polymers 2022, 14, 1703. [Google Scholar] [CrossRef]
- Elshemy, N.S.; Haggag, K. New Trend in Textile Coloration Using Microwave Irradiation. J. Text. Color. Polym. Sci. 2019, Vol. 16(No.1), pp 33–48. [Google Scholar] [CrossRef]
- Öner, E.; Büyükakıncı, Y.; Sökmen, N. Microwave-assisted dyeing of poly(butylene terephthalate) fabrics with disperse dyes. Coloration Technology 2013, 129(2), 125–130. [Google Scholar] [CrossRef]
- Büyükakıncı, Y.; Sökmen, N.; Öner, E. Microwave assisted exhaust dyeing of polypropylene. Paper presented at the 4th Centrel European Conference, Liberec, Czech Republic, 7-9 September 2005. [Google Scholar]
- Haggag, K. Fixation of Pad-Dyeing on Cotton Using Microwave Heating. American Dyestuff Reporter 1990, vol. 79, 26–30. [Google Scholar]
- Lill, J. R. Microwave-Assisted Proteomics. 2009. [Google Scholar] [PubMed]
- Hayes, B. L. Microwave Synthesis. 2002. [Google Scholar]
- Can, M. C. Microwave Heating as a Tool for Sustainable Chemistry; 2010. [Google Scholar]
- Trotman, E.R. Dyeing and Chemical Technology of Textile Fibres; 1970. [Google Scholar]
- Özcan, Y. Textile Fiber and Dyeing Technique; 1978. [Google Scholar]
- Mortimer, M.; Taylor, P. Chemical Kinetics and Mechanism; 2002. [Google Scholar]
- House, J. E. Principles of Chemical Kinetics; 2007. [Google Scholar]
- Vassileva, V.; Zheleva, Z.; Valcheva, E. The Kinetic Model of Dye Fixation on Cotton Fibers. Journal of University of Chemical Technology and Metallurgy 2008, 43(3), 323–326. [Google Scholar]
- Teker, M; Imamoglu, M; Bocek, N. - Adsorption of Some Textile Dyes on Activated Carbon Prepared From Rice Hulls - Fresenıus Environmental Bulletin - Vol.18 - pp.709 - ISSN: 1018-4619 - English - Article - 2009 - WOS:000266898500009. 2009. [Google Scholar] [CrossRef]
- Ujhelyiova, A.; Bolhova, E.; Oravkinova, J.; Tin, R.; Marcin, A. Kinetics of dyeing process of blend polypropylene/polyester fibres with disperse dye. Dyes and Pigments 2007, 72, 212–216. [Google Scholar] [CrossRef]
- Roy, MN; Hossain, MT; Hasan, MZ; Islam, K; Rokonuzzaman, M; Islam, MA; Khandaker, S; Bashar, MM. Adsorption, Kinetics and Thermodynamics of Reactive Dyes on Chitosan Treated Cotton Fabric. Textile & Leather Review 2023, 6, 211–232. [Google Scholar] [CrossRef]
- Lis, M. J.; Bezerra, F. M.; Meng, X.; Qian, H.; Immich, A. P. S. Kinetics of Dyeing in Continuous Circulation with Direct Dyes: Tencel Case. World Journal of Textile Engineering and Technology 2019, 5, 97–104. [Google Scholar] [CrossRef]
- Elshemy, N. S.; Elshakankery, M. H.; Shahien, S. M.; Haggag, K.; El-Sayed, H. Kinetic Investigations on Dyeing of Different Polyester Fabrics Using Microwave Irradiation. Egyptian Journal of Chemistry 2017, 60(Conference Issue), 79–88. [Google Scholar] [CrossRef]
- Ujhelyiova, A.; Bolhova, E.; Oravkinova, J.; Tiňo, R.; Marcinčin, A. Kinetics of dyeing process of blend polypropylene/polyester fibres with disperse dye. Dyes and Pigments 2007, 72(2), 212–216. [Google Scholar] [CrossRef]
- Reda, E.M.; Othman, H.A.; Ghazah, H.; Hassabo, A. G. Kinetic and isothermal study of dye absorption using pre-treated natural fabrics using polyamine compounds. Sci Rep. 2025, 15(1), 3794. [Google Scholar] [CrossRef] [PubMed]
- Georgiadou, K.L.; Tsatsaroni, E.G.; Eleftheriadis, I.C.; Kehayoglou, A.H. Disperse dyeing of polyester fibers: Kinetic and equilibrium study. Journal of Applied Polymer Science 2002, Volume83(Issue13), 2785–2790. [Google Scholar] [CrossRef]
- Alşan, H. G. Investigation of Dyeing Kinetics of Cotton Fiber with Disperse Dyestuff in Microwave Environment. Master's thesis YÖK National Thesis Center, Sakarya University, 2019. Available online: https://tez.yok.gov.tr/UlusalTezMerkezi/.
- Hu, Q.; Siting, Ma; He, Z.; Liu; Pei, X. A revisit on intraparticle diffusion models with analytical solutions: Underlying assumption, application scope and solving method. Journal of Water Process Engineering 2024, Vol. 60, 10524. [Google Scholar] [CrossRef]
- Yiğit Atabek, E. Investigation of Dyeability of Polypropylene Fiber. Doctoral thesis YÖK National Thesis Center, Sakarya University, 2009. Available online: https://tez.yok.gov.tr/UlusalTezMerkezi/.
- Huang, J.; Liu, F.; Zhang, J. Insights into adsorption rate constants and rate laws of preset and arbitrary orders. Separation and Purification Technology 2021, Vol.255, 117713. [Google Scholar] [CrossRef]
- Doyuran, A. Dyeing of Synthetic Fibers in Microwave Environment. Master's thesis YÖK National Thesis Center, Sakarya University, 2010. Available online: https://tez.yok.gov.tr/UlusalTezMerkezi/.
- Miklavc, *!!! REPLACE !!!*. Chem. Phys.Chem 2001, 552. [CrossRef]
- Binner, J.G.P.; Hassine, N. A.; Cross, T. E. J. Mater. Sci. 1995, 30, 5389.56. [CrossRef]
- Garbacia, S.; Desai, B.; Lavaster, O.; Kappe, C. O. J. Org. Chem. 2003, 68, 9136. [CrossRef]
- Stadler; Kappe, C. O. J. Chem. Soc., Perkin Trans. 2 2000, 2, 1363. [CrossRef]
- Hoz, *!!! REPLACE !!!*; Diaz-Ortiz, A.; Moreno, A. Chem. Soc. Rev. 2005, 34, 164. [CrossRef]














| First Order | Second Order | |||
| Temperature | k1 (1/min) | R2 | k2(L/g.min) | R2 |
| 50 0C | 0,0275 | 0,9874 | 4,1579 | 0.9999 |
| 60 0C | 0,0396 | 0,9648 | 8,556 | 0.9998 |
| 70 0C | 0,0581 | 0,9379 | 17,660 | 0.9998 |
| 80 0C | 0,0711 | 0,9022 | 30,298 | 0.9999 |
| 95 0C | 0,0931 | 0,8387 | 76,063 | 0.9997 |
| Concentration (gr/100 ml) | 50 °C | 60 °C | 70 °C | 80 °C | 95 °C |
| 0 | 0,01000 | 0,01000 | 0,01000 | 0,01000 | 0,01000 |
| 5 | 0,00824 | 0,00706 | 0,00535 | 0,00400 | 0,00212 |
| 10 | 0,00700 | 0,00548 | 0,00365 | 0,00249 | 0,00118 |
| 15 | 0,00608 | 0,00449 | 0,00277 | 0,00182 | 0,00083 |
| 20 | 0,00537 | 0,00381 | 0,00223 | 0,00142 | 0,00062 |
| 25 | 0,00480 | 0,00332 | 0,00186 | 0,00118 | 0,00050 |
| 30 | 0,00434 | 0,00294 | 0,00158 | 0,00099 | 0,00042 |
| First Order | Second Order | |||
| Temperature | k1(1/min) | R2 | k2(lt/g.min) | R2 |
| 50 0C | 0,0646 | 0,9734 | 9,3013 | 0,9938 |
| 60 0C | 0,0977 | 0,9803 | 17,925 | 0,9932 |
| 70 0C | 0,1451 | 0,9796 | 33,52 | 0,9967 |
| 80 0C | 0,1708 | 0,9179 | 61,509 | 0,9819 |
| 95 0C | 0,2344 | 0,8504 | 174,94 | 0,9638 |
| Concentration (gr/100 ml) | 50 °C | 60 °C | 70 °C | 80 °C | 95 °C |
| 0 | 0,01000 | 0,01000 | 0,01000 | 0,01000 | 0,01000 |
| 1 | 0,00904 | 0,00787 | 0,00813 | 0,00481 | 0,00256 |
| 2 | 0,00824 | 0,00701 | 0,00669 | 0,00393 | 0,00199 |
| 3 | 0,00757 | 0,00636 | 0,00557 | 0,00335 | 0,00163 |
| 4 | 0,00702 | 0,00581 | 0,00470 | 0,00291 | 0,00137 |
| 5 | 0,00656 | 0,00533 | 0,00403 | 0,00254 | 0,00116 |
| 6 | 0,00619 | 0,00489 | 0,00350 | 0,00223 | 0,00099 |
| 7 | 0,00587 | 0,00449 | 0,00310 | 0,00196 | 0,00084 |
| 8 | 0,00561 | 0,00412 | 0,00279 | 0,00171 | 0,00071 |
| 9 | 0,00540 | 0,00377 | 0,00255 | 0,00149 | 0,00059 |
| 10 | 0,00522 | 0,00344 | 0,00236 | 0,00128 | 0,00048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
