Preprint
Article

This version is not peer-reviewed.

Transcription-Coupled Repair as a Mutagenic Mechanism During Replication Stress

Submitted:

11 December 2025

Posted:

12 December 2025

You are already at the latest version

Abstract
Replication stress (RS) is a primary driver of genomic instability in cancer, yet the contribution of transcription-coupled repair to this process remains poorly understood. Here, we investigate how the TC-NER factor ERCC6 (CSB) shapes mutational landscapes under RS. We demonstrate that ERCC6 deficiency impairs replication restart and biases early damage signaling toward a 53BP1-mediated response, ultimately leading to senescence. Conversely, ERCC6-proficient cells prioritize survival and proliferative recovery but at the cost of distinct genomic alterations. Whole-exome sequencing reveals that ERCC6 drives the retention of stress-induced mutations specifically within coding regions of transcriptionally active loci, whereas ERCC6-deficient cells accumulate variants primarily in intergenic regions. These findings uncover a survival-mutagenesis trade-off: ERCC6 safeguards transcriptional continuity during replication stress but promotes mutational burdens in functional genomes. This mechanism parallels bacterial adaptive mutagenesis, identifying ERCC6 as a context-dependent driver of somatic evolution and tumor heterogeneity.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated