Graphene (GRA) and graphene oxide (GO) have drawn significant attention in materials science, chemistry, and nanotechnology because of their tunable physicochemical properties and wide range of potential uses in biomedical and environmental applications. Building reliable, large-scale molecular models of GRA and GO is essential for molecular simulations of wetting, adsorption, and catalytic behavior. However, current methods often struggle to generate large, chemically consistent sheets at high oxidation levels. In addition, the resulting structures are frequently incompatible across different simulation packages. This work introduces a step-by-step protocol with custom Tool Command Language (Tcl) and modified Python scripts for building large-scale, AMBER-compatible GO structures with oxidation levels from 0% to 68%. The workflow applies a systematic surface modification strategy combined with post-processing and atom-type assignment routines to ensure chemical accuracy and force field consistency. The dataset includes fifteen MOL2 format files of 20 × 20 nm² GO sheets, ranging from pristine to highly oxidized surfaces, each validated through oxidation-ratio analysis and structural integrity checks. Together, the dataset and protocol provide a design of scalable and chemically reliable GO molecular models for molecular dynamics simulations.