Submitted:
10 December 2025
Posted:
11 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Laboratory Models for Research in Haematological Cancers
2.1. Mouse Models for Haematological Research
2.2. The CAM Model as a Gateway to Living Systems
2.3. Evolutionary Distance, Functional Relevance (or) Model Relevance: Avians and Humans Compared
2.4. Species-Specific Considerations in CAM Models of Haematologic Malignancy
3. Modelling Blood Cancers in the CAM Model
3.1. Leukaemia
3.2. Lymphoma
3.2.1. Hodgkin’s Lymphoma (HL)
3.2.2. Non-Hodgkin’s Lymphoma (NHL)
3.2.3. B-Cell Lymphoma
3.3. Multiple Myeloma
Modelling MM Angiogenesis on the CAM
MM Solid Mass Growth on CAM
MM Drug Testing on the CAM
Repurposing Drugs for MM
4. Conclusions and Considerations
References
- Rosmarin, A. Leukemia, Lymphoma, and Myeloma. In Cancer; John Wiley & Sons, Ltd, 2019; pp. 299–316. ISBN 978-1-119-64521-4. [Google Scholar]
- Fardin, F.; Akter, M. Review on Blood Cancer and Their Types. J. Mol. Pharm. Regulatory Aff. 2021, 3, 18–26. [Google Scholar]
- Blood Cancer Information. Available online: https://www.leukaemia.org.au/blood-cancer/ (accessed on 8 January 2025).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer Statistics, 2024. CA: A Cancer Journal for Clinicians 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Blood Cancers. Available online: https://www.yalemedicine.org/conditions/blood-cancers (accessed on 8 January 2025).
- European Cancer Information System. Available online: https://ecis.jrc.ec.europa.eu/explorer.php?$0-0$1-All$2-All$4-1,2$3-0$6-0,85$5-2022,2022$7-7$CEstByCountry$X0_8-3$X0_19-AE27$X0_20-No$CEstBySexByCountry$X1_8-3$X1_19-AE27$X1_-1-1$CEstByIndiByCountry$X2_8-3$X2_19-AE27$X2_20-No$CEstRelative$X3_8-3$X3_9-AE27$X3_19-AE27$CEstByCountryTable$X4_19-AE27 (accessed on 8 January 2025).
- Staff, D.-F. What Are the Most Common Blood Cancers in Adults? Dana-Farber Cancer Institute, 2019. [Google Scholar]
- In Vitro 3D Models of Haematological Malignancies: Current Trends and the Road Ahead? Available online: https://www.mdpi.com/2073-4409/14/1/38 (accessed on 8 January 2025).
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discovery 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Haloupek, N. The Landscape of Blood Cancer Research Today—and Where the Field Is Headed. Blood Cancer Discov 2020, 1, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chng, W.-J. Biological Hallmarks and Emerging Strategies to Target STAT3 Signaling in Multiple Myeloma. Cells 2022, 11, 941. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Y.; Abdullah; Alsharif, K.F.; Aschner, M.; Theyab, A.; Khan, F.; Saso, L.; Khan, H. Therapeutic Role of Carotenoids in Blood Cancer: Mechanistic Insights and Therapeutic Potential. Nutrients 2022, 14, 1949. [Google Scholar] [CrossRef]
- Cao, H.; Wu, T.; Zhou, X.; Xie, S.; Sun, H.; Sun, Y.; Li, Y. Progress of Research on PD-1/PD-L1 in Leukemia. Front. Immunol. 2023, 14. [Google Scholar] [CrossRef]
- Bosseboeuf, A.; Allain-Maillet, S.; Mennesson, N.; Tallet, A.; Rossi, C.; Garderet, L.; Caillot, D.; Moreau, P.; Piver, E.; Girodon, F.; et al. Pro-Inflammatory State in Monoclonal Gammopathy of Undetermined Significance and in Multiple Myeloma Is Characterized by Low Sialylation of Pathogen-Specific and Other Monoclonal Immunoglobulins. Front. Immunol. 2017, 8. [Google Scholar] [CrossRef]
- Chu, M.P.; Kriangkum, J.; Venner, C.P.; Sandhu, I.; Hewitt, J.; Belch, A.R.; Pilarski, L.M. Addressing Heterogeneity of Individual Blood Cancers: The Need for Single Cell Analysis. Cell Biol Toxicol 2017, 33, 83–97. [Google Scholar] [CrossRef]
- Stork, M.; Sevcikova, S.; Jelinek, T.; Minarik, J.; Radocha, J.; Pika, T.; Pospisilova, L.; Spicka, I.; Straub, J.; Pavlicek, P.; et al. Unexpected Heterogeneity of Newly Diagnosed Multiple Myeloma Patients with Plasmacytomas. Biomedicines 2022, 10, 2535. [Google Scholar] [CrossRef]
- Capelletti, M.M.; Montini, O.; Ruini, E.; Tettamanti, S.; Savino, A.M.; Sarno, J. Unlocking the Heterogeneity in Acute Leukaemia: Dissection of Clonal Architecture and Metabolic Properties for Clinical Interventions. International Journal of Molecular Sciences 2025, 26, 45. [Google Scholar] [CrossRef]
- Jacquemin, V.; Antoine, M.; Dom, G.; Detours, V.; Maenhaut, C.; Dumont, J.E. Dynamic Cancer Cell Heterogeneity: Diagnostic and Therapeutic Implications. Cancers (Basel) 2022, 14, 280. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.A.; Shah, B.; Advani, A.; Aoun, P.; Boyer, M.W.; Burke, P.W.; DeAngelo, D.J.; Dinner, S.; Fathi, A.T.; Gauthier, J.; et al. Acute Lymphoblastic Leukemia, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network 2021, 19, 1079–1109. [Google Scholar] [CrossRef]
- Wainman, L.M.; Khan, W.A.; Kaur, P. Chronic Lymphocytic Leukemia: Current Knowledge and Future Advances in Cytogenomic Testing. In Advancements in Cancer Research; Sergi, C.M., Ed.; Exon Publications: Brisbane (AU), 2023; ISBN 978-0-6453320-9-4. [Google Scholar]
- Chronic Lymphocytic Leukemia - Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/clyl.html (accessed on 5 November 2025).
- Pektaş, G.; Gönül, E.; Öncü, Ş.; Becit Kızılkaya, M.; Sadi, G.; Pektaş, M.B. Chronic Lymphocytic Leukemia: Investigation of Survival and Prognostic Factors with Drug-Related Remission. Diagnostics (Basel) 2025, 15, 728. [Google Scholar] [CrossRef] [PubMed]
- Acute Myeloid Leukemia - Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/amyl.html (accessed on 5 November 2025).
- Chronic Myeloid Leukemia - Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/cmyl.html (accessed on 5 November 2025).
- Hodgkin Lymphoma - Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/hodg.html (accessed on 5 November 2025).
- Non-Hodgkin Lymphoma - Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/nhl.html (accessed on 5 November 2025).
- Myeloma - Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/mulmy.html (accessed on 5 November 2025).
- Sanchez-Herrero, A.; Calvo, I.A.; Flandes-Iparraguirre, M.; Landgraf, M.; Lahr, C.A.; Shafiee, A.; Granero-Molto, F.; Saez, B.; Mazo, M.M.; Paiva, B.; et al. Engineering a Humanised Niche to Support Human Haematopoiesis in Mice: Novel Opportunities in Modelling Cancer. Cancers (Basel) 2020, 12, 2205. [Google Scholar] [CrossRef] [PubMed]
- Mian, S.A.; Anjos-Afonso, F.; Bonnet, D. Advances in Human Immune System Mouse Models for Studying Human Hematopoiesis and Cancer Immunotherapy. Front Immunol 2021, 11, 619236. [Google Scholar] [CrossRef]
- Tian, H.; Lyu, Y.; Yang, Y.-G.; Hu, Z. Humanized Rodent Models for Cancer Research. Front Oncol 2020, 10, 1696. [Google Scholar] [CrossRef]
- Walrath, J.C.; Hawes, J.J.; Van Dyke, T.; Reilly, K.M. Genetically Engineered Mouse Models in Cancer Research. Adv Cancer Res 2010, 106, 113–164. [Google Scholar] [CrossRef]
- Kohnken, R.; Porcu, P.; Mishra, A. Overview of the Use of Murine Models in Leukemia and Lymphoma Research. Front Oncol 2017, 7, 22. [Google Scholar] [CrossRef]
- Van Norman, G.A. Limitations of Animal Studies for Predicting Toxicity in Clinical Trials. JACC Basic Transl Sci 2020, 5, 387–397. [Google Scholar] [CrossRef]
- Guide for the Care and Use of Laboratory Animals: Eighth Edition; National Academies Press: Washington, D.C., 2011; ISBN 978-0-309-15400-0.
- Hartung, T. The (Misleading) Role of Animal Models in Drug Development. Front. Drug Discov. 2024, 4. [Google Scholar] [CrossRef]
- Lang, Y.; Lyu, Y.; Tan, Y.; Hu, Z. Progress in Construction of Mouse Models to Investigate the Pathogenesis and Immune Therapy of Human Hematological Malignancy. Front. Immunol. 2023, 14. [Google Scholar] [CrossRef] [PubMed]
- Kohnken, R.; Porcu, P.; Mishra, A. Overview of the Use of Murine Models in Leukemia and Lymphoma Research. Front. Oncol. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Fischer, D.; Fluegen, G.; Garcia, P.; Ghaffari-Tabrizi-Wizsy, N.; Gribaldo, L.; Huang, R.Y.-J.; Rasche, V.; Ribatti, D.; Rousset, X.; Pinto, M.T.; et al. The CAM Model—Q&A with Experts. Cancers (Basel) 2022, 15, 191. [Google Scholar] [CrossRef]
- Martowicz, A.; Kern, J.; Gunsilius, E.; Untergasser, G. Establishment of a Human Multiple Myeloma Xenograft Model in the Chicken to Study Tumor Growth, Invasion and Angiogenesis. J Vis Exp 2015, 52665. [Google Scholar] [CrossRef]
- Will the Netherlands Ever Be Free of Animal Testing? - Will the Netherlands Ever Be Free of Animal Testing? - Maastricht University. Available online: https://www.maastrichtuniversity.nl/will-netherlands-ever-be-free-animal-testing (accessed on 2 December 2025).
- Sanou, H. No Let up for Animals as Testing Increases despite Projected Ban. Available online: https://www.dutchnews.nl/2024/11/no-let-up-for-animals-as-testing-increases-despite-projected-ban/ (accessed on 29 March 2025).
- Tolliday, B. Biomedical Sector in the Netherlands Welcomes 2022 EU Report on the Number of Animals Used in Research and Testing. Available online: https://www.eara.eu/post/biomedical-sector-in-the-netherlands-welcomes-2022-eu-report-on-the-number-of-animals-used-in-resear (accessed on 31 March 2025).
- Dutch Ban on Animal Experiments. Animal Welfare.
- Gbyli, R.; Song, Y.; Halene, S. Humanized Mice as Preclinical Models for Myeloid Malignancies. Biochemical Pharmacology 2020, 174, 113794. [Google Scholar] [CrossRef]
- Zitvogel, L.; Pitt, J.M.; Daillère, R.; Smyth, M.J.; Kroemer, G. Mouse Models in Oncoimmunology. Nat Rev Cancer 2016, 16, 759–773. [Google Scholar] [CrossRef]
- de Jong, M.M.E.; Chen, L.; Raaijmakers, M.H.G.P.; Cupedo, T. Bone Marrow Inflammation in Haematological Malignancies. Nat Rev Immunol 2024, 24, 543–558. [Google Scholar] [CrossRef]
- Bernardi, R.; Grisendi, S.; Pandolfi, P.P. Modelling Haematopoietic Malignancies in the Mouse and Therapeutical Implications. Oncogene 2002, 21, 3445–3458. [Google Scholar] [CrossRef]
- Yanguas-Casás, N.; Pedrosa, L.; Fernández-Miranda, I.; Sánchez-Beato, M. An Overview on Diffuse Large B-Cell Lymphoma Models: Towards a Functional Genomics Approach. Cancers 2021, 13, 2893. [Google Scholar] [CrossRef]
- Nowak-Sliwinska, P.; Segura, T.; Iruela-Arispe, M.L. The Chicken Chorioallantoic Membrane Model in Biology, Medicine and Bioengineering. Angiogenesis 2014, 17, 779–804. [Google Scholar] [CrossRef] [PubMed]
- Bellairs, R.; Osmond, M. Chapter 13 - Extra-Embryonic Membranes. In Atlas of Chick Development (Third Edition); Bellairs, R., Osmond, M., Eds.; Academic Press: Boston, 2014; pp. 127–129. ISBN 978-0-12-384951-9. [Google Scholar]
- Ribatti, D.; Nico, B.; Vacca, A.; Roncali, L.; Burri, P.H.; Djonov, V. Chorioallantoic Membrane Capillary Bed: A Useful Target for Studying Angiogenesis and Anti-Angiogenesis in Vivo. The Anatomical Record 2001, 264, 317–324. [Google Scholar] [CrossRef]
- Ribatti, D. The Chick Embryo Chorioallantoic Membrane (CAM) Assay. Reproductive Toxicology 2017, 70, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, S.; Feng, Y.; Zhang, J.; Du, Y.; Zhang, J.; Van Ongeval, C.; Ni, Y.; Li, Y. Utilisation of Chick Embryo Chorioallantoic Membrane as a Model Platform for Imaging-Navigated Biomedical Research. Cells 2021, 10, 463. [Google Scholar] [CrossRef] [PubMed]
- ROUS, P. Tumor Implantations in the Developing Embryo. Experiments with a Transmissible Sarcoma of the Fowl. J. Amer. Med. Ass. 1911, 56, 741–742. [Google Scholar]
- Murphy, J.B.; Rous, P. THE BEHAVIOR OF CHICKEN SARCOMA IMPLANTED IN THE DEVELOPING EMBRYO. Journal of Experimental Medicine 1912, 15, 119–132. [Google Scholar] [CrossRef]
- Sarnella, A.; Ferrara, Y.; Terlizzi, C.; Albanese, S.; Monti, S.; Licenziato, L.; Mancini, M. The Chicken Embryo: An Old but Promising Model for In Vivo Preclinical Research. Biomedicines 2024, 12, 2835. [Google Scholar] [CrossRef]
- Ribatti, D.; Annese, T. Chick Embryo in Experimental Embryology and More. Pathology - Research and Practice 2023, 245, 154478. [Google Scholar] [CrossRef]
- Rashidi, H; Sottile, V. The Chick Embryo: Hatching a Model for Contemporary Biomedical Research. Bioessays 2024, 31, 459–465. [Google Scholar] [CrossRef]
- Kain, K.H.; Miller, J.W.I.; Jones-Paris, C.R.; Thomason, R.T.; Lewis, J.D.; Bader, D.M.; Barnett, J.V.; Zijlstra, A. The Chick Embryo as an Expanding Experimental Model for Cancer and Cardiovascular Research. Dev Dyn 2014, 243, 216–228. [Google Scholar] [CrossRef]
- Eckrich, J.; Kugler, P.; Buhr, C.R.; Ernst, B.P.; Mendler, S.; Baumgart, J.; Brieger, J.; Wiesmann, N. Monitoring of Tumor Growth and Vascularization with Repetitive Ultrasonography in the Chicken Chorioallantoic-Membrane-Assay. Sci Rep 2020, 10, 18585. [Google Scholar] [CrossRef]
- Dhayer, M.; Jordao, A.; Dekiouk, S.; Cleret, D.; Germain, N.; Marchetti, P. Implementing Chicken Chorioallantoic Membrane (CAM) Assays for Validating Biomaterials in Tissue Engineering: Rationale and Methods. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2024, 112, e35496. [Google Scholar] [CrossRef]
- Pinto, M.T.; Ribeiro, A.S.; Conde, I.; Carvalho, R.; Paredes, J. The Chick Chorioallantoic Membrane Model: A New In Vivo Tool to Evaluate Breast Cancer Stem Cell Activity. Int J Mol Sci 2020, 22, 334. [Google Scholar] [CrossRef]
- Garcia, P.; Wang, Y.; Viallet, J.; Macek Jilkova, Z. The Chicken Embryo Model: A Novel and Relevant Model for Immune-Based Studies. Front Immunol 2021, 12, 791081. [Google Scholar] [CrossRef]
- The Bursa of Fabricius and Antibody Production - ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0032579119369536 (accessed on 14 January 2025).
- Schat, K.A. The Importance of the Bursa of Fabricius, B Cells and T Cells for the Pathogenesis of Marek’s Disease: A Review. Viruses 2022, 14, 2015. [Google Scholar] [CrossRef] [PubMed]
- Voelkl, B.; Altman, N.S.; Forsman, A.; Forstmeier, W.; Gurevitch, J.; Jaric, I.; Karp, N.A.; Kas, M.J.; Schielzeth, H.; Van de Casteele, T.; et al. Reproducibility of Animal Research in Light of Biological Variation. Nat Rev Neurosci 2020, 21, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Bruggeman, V.; Van As, P.; Decuypere, E. Developmental Endocrinology of the Reproductive Axis in the Chicken Embryo. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2002, 131, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Guo, J.; Zhang, J.; Ma, Z.; Li, H. Overview of Chicken Embryo Genes Related to Sex Differentiation. PeerJ 2024, 12, e17072. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Chen, S.; Yang, N.; Zheng, J. Overview of Avian Sex Reversal. Int J Mol Sci 2023, 24, 8284. [Google Scholar] [CrossRef]
- Wong, E.A.; Uni, Z. Centennial Review: The Chicken Yolk Sac Is a Multifunctional Organ. Poultry Science 2021, 100, 100821. [Google Scholar] [CrossRef] [PubMed]
- Histological Analyses Demonstrate the Temporary Contribution of Yolk Sac, Liver, and Bone Marrow to Hematopoiesis during Chicken Development | PLOS One. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090975 (accessed on 11 September 2025).
- Fellah, J.S.; Jaffredo, T.; Nagy, N.; Dunon, D. Chapter 3 - Development of the Avian Immune System. In Avian Immunology (Second Edition); Schat, K.A., Kaspers, B., Kaiser, P., Eds.; Academic Press: Boston, 2014; pp. 45–63. ISBN 978-0-12-396965-1. [Google Scholar]
- Oláh, I.; Vervelde, L. 2 - STRUCTURE OF THE AVIAN LYMPHOID SYSTEM. In Avian Immunology; Davison, F., Kaspers, B., Schat, K.A., Eds.; Academic Press: London, 2008; pp. 13–II. ISBN 978-0-12-370634-8. [Google Scholar]
- Kaiser, P.; Stäheli, P. Chapter 10 - Avian Cytokines and Chemokines. In Avian Immunology (Second Edition); Schat, K.A., Kaspers, B., Kaiser, P., Eds.; Academic Press: Boston, 2014; pp. 189–204. ISBN 978-0-12-396965-1. [Google Scholar]
- Nair, V. 19 - TUMOURS OF THE AVIAN IMMUNE SYSTEM. In Avian Immunology; Davison, F., Kaspers, B., Schat, K.A., Eds.; Academic Press: London, 2008; pp. 359–372. ISBN 978-0-12-370634-8. [Google Scholar]
- Neoplastic Diseases - Diseases of Poultry - Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1002/9781119371199.ch15 (accessed on 11 September 2025).
- Jasrotia, S.; Gupta, R.; Sharma, A.; Halder, A.; Kumar, L. Cytokine Profile in Multiple Myeloma. Cytokine 2020, 136, 155271. [Google Scholar] [CrossRef]
- Tissue-Resident Macrophages Promote Early Dissemination of Multiple Myeloma via IL-6 and TNFα - PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/34550328/ (accessed on 11 September 2025).
- Ullah, T.R. The Role of CXCR4 in Multiple Myeloma: Cells’ Journey from Bone Marrow to Beyond. J Bone Oncol 2019, 17, 100253. [Google Scholar] [CrossRef]
- Subramaniam, S.; Johnston, J.; Preeyanon, L.; Brown, C.T.; Kung, H.-J.; Cheng, H.H. Integrated Analyses of Genome-Wide DNA Occupancy and Expression Profiling Identify Key Genes and Pathways Involved in Cellular Transformation by a Marek’s Disease Virus Oncoprotein. Meq. J Virol 2013, 87, 9016–9029. [Google Scholar] [CrossRef]
- Kundeková, B.; Máčajová, M.; Meta, M.; Čavarga, I.; Bilčík, B. Chorioallantoic Membrane Models of Various Avian Species: Differences and Applications. Biology (Basel) 2021, 10, 301. [Google Scholar] [CrossRef]
- Miebach, L.; Berner, J.; Bekeschus, S. In Ovo Model in Cancer Research and Tumor Immunology. Front. Immunol. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Mesas, C.; Chico, M.A.; Doello, K.; Lara, P.; Moreno, J.; Melguizo, C.; Perazzoli, G.; Prados, J. Experimental Tumor Induction and Evaluation of Its Treatment in the Chicken Embryo Chorioallantoic Membrane Model: A Systematic Review. International Journal of Molecular Sciences 2024, 25, 837. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.V.; Berlow, N.E.; Price, L.H.; Mansoor, A.; Cairo, S.; Rugonyi, S.; Keller, C. Preclinical Therapeutics Ex Ovo Quail Eggs as a Biomimetic Automation-Ready Xenograft Platform. Sci Rep 2021, 11, 23302. [Google Scholar] [CrossRef]
- Hecht, M.; Schulte, J.H.; Eggert, A.; Wilting, J.; Schweigerer, L. The Neurotrophin Receptor TrkB Cooperates with C-Met in Enhancing Neuroblastoma Invasiveness. Carcinogenesis 2005, 26, 2105–2115. [Google Scholar] [CrossRef]
- Kawahara-Miki, R.; Sano, S.; Nunome, M.; Shimmura, T.; Kuwayama, T.; Takahashi, S.; Kawashima, T.; Matsuda, Y.; Yoshimura, T.; Kono, T. Next-Generation Sequencing Reveals Genomic Features in the Japanese Quail. Genomics 2013, 101, 345–353. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Hou, Z.; Fan, G.; Pi, J.; Sun, S.; Chen, J.; Liu, H.; Du, X.; Shen, J.; et al. Population Genomic Data Reveal Genes Related to Important Traits of Quail. Gigascience 2018, 7, giy049. [Google Scholar] [CrossRef]
- Coturnix Japonica Genome Assembly Coturnix Japonica 2.0. Available online: https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_001577835.1/ (accessed on 11 November 2025).
- Grinberg, I.; Reis, A.; Ohana, A.; Taizi, M.; Cipok, M.; Tavor, S.; Rund, D.; Deutsch, V.R.; Goldstein, R.S. Engraftment of Human Blood Malignancies to the Turkey Embryo: A Robust New in Vivo Model. Leukemia Research 2009, 33, 1417–1426. [Google Scholar] [CrossRef]
- Winkens, T.; Schweitzer, P.; Perkas, O.; Kühnel, C.; Ndum, F.; Pomraenke, M.; Greiser, J.; Freesmeyer, M. In-Ovo Imaging Using Ostrich Eggs: Biodistribution of F-18-FDG in Ostrich Embryos. Exp Biol Med (Maywood) 2025, 250, 10560. [Google Scholar] [CrossRef]
- A Novel Breast Cancer Xenograft Model Using the Ostrich Chorioallantoic Membrane—A Proof of Concept. Available online: https://www.mdpi.com/2306-7381/10/5/349 (accessed on 1 October 2025).
- Taizi, M.; Deutsch, V.R.; Leitner, A.; Ohana, A.; Goldstein, R.S. A Novel and Rapid in Vivo System for Testing Therapeutics on Human Leukemias. Experimental Hematology 2006, 34, 1698–1708. [Google Scholar] [CrossRef]
- Farhat, A.; Ali-Deeb, E.; Sulaiman, A.; Aljamali, M. Reinforcing the Utility of Chick Embryo Model to in Vivo Evaluate Engraftment of Human Leukemic Stem Cells. Journal of the Egyptian National Cancer Institute 2018, 30, 1–5. [Google Scholar] [CrossRef]
- Pacini, S.; Punzi, T.; Gulisano, M.; Ruggiero, M. Friend Erythroleukemia Cells Induce Angiogenesis in Chick Embryo Chorioallantoic Membrane and in Human Umbilical Vein Endothelial Cells. Biological Research 2008, 41, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.B.; Baksi, R.; Chaudagar, K.K.; Nivsarkar, M.; Mehta, A.A. Anti-leukemic and Anti-angiogenic Effects of d-Limonene on K562-implanted C57BL/6 Mice and the Chick Chorioallantoic Membrane Model. Animal Model Exp Med 2018, 1, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Kuete, V.; Eichhorn, T.; Wiench, B.; Krusche, B.; Efferth, T. Cytotoxicity, Anti-Angiogenic, Apoptotic Effects and Transcript Profiling of a Naturally Occurring Naphthyl Butenone, Guieranone A. Cell Div 2012, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Arlt, A.; von Bonin, F.; Rehberg, T.; Perez-Rubio, P.; Engelmann, J.C.; Limm, K.; Reinke, S.; Dullin, C.; Sun, X.; Specht, R.; et al. High CD206 Levels in Hodgkin Lymphoma-educated Macrophages Are Linked to Matrix-remodeling and Lymphoma Dissemination. Mol Oncol 2020, 14, 571–589. [Google Scholar] [CrossRef]
- Karagianni, F.; Piperi, C.; Casar, B.; de la Fuente-Vivas, D.; García-Gómez, R.; Lampadaki, K.; Pappa, V.; Papadavid, E. Combination of Resminostat with Ruxolitinib Exerts Antitumor Effects in the Chick Embryo Chorioallantoic Membrane Model for Cutaneous T Cell Lymphoma. Cancers 2022, 14, 1070. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, M.; Becker, J.; Eberth, S.; Kube, D.; Wilting, J. The Chick Chorioallantoic Membrane as an in Vivo Xenograft Model for Burkitt Lymphoma. BMC Cancer 2014, 14, 339. [Google Scholar] [CrossRef]
- Klingenberg, M.; Becker, J.; Eberth, S.; Kube, D.; Wilting, J. The NADPH Oxidase Inhibitor Imipramine-Blue in the Treatment of Burkitt Lymphoma. Molecular Cancer Therapeutics 2014, 13, 833–841. [Google Scholar] [CrossRef]
- Steiner, N.; Ribatti, D.; Willenbacher, W.; Jöhrer, K.; Kern, J.; Marinaccio, C.; Aracil, M.; García-Fernández, L.F.; Gastl, G.; Untergasser, G.; et al. Marine Compounds Inhibit Growth of Multiple Myeloma in Vitro and in Vivo. Oncotarget 2015, 6, 8200–8209. [Google Scholar] [CrossRef]
- Vacca, A.; Ribatti, D.; Presta, M.; Minischetti, M.; Iurlaro, M.; Ria, R.; Albini, A.; Bussolino, F.; Dammacco, F. Bone Marrow Neovascularization, Plasma Cell Angiogenic Potential, and Matrix Metalloproteinase-2 Secretion Parallel Progression of Human Multiple Myeloma. Blood 1999, 93, 3064–3073. [Google Scholar] [CrossRef]
- Ribatti, D.; De Falco, G.; Nico, B.; Ria, R.; Crivellato, E.; Vacca, A. In Vivo Time-Course of the Angiogenic Response Induced by Multiple Myeloma Plasma Cells in the Chick Embryo Chorioallantoic Membrane. J Anat 2003, 203, 323–328. [Google Scholar] [CrossRef]
- Ribatti, D.; Nico, B.; Vacca, A.; Presta, M. The Gelatin Sponge-Chorioallantoic Membrane Assay. Nat Protoc 2006, 1, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Nemkov, T.; D’Alessandro, A.; Reisz, J.A. Metabolic Underpinnings of Leukemia Pathology and Treatment. Cancer Rep (Hoboken) 2018, 2, e1139. [Google Scholar] [CrossRef]
- Rajkumar, S.V. Multiple Myeloma: 2024 Update on Diagnosis, Risk-Stratification, and Management. American Journal of Hematology 2024, 99, 1802–1824. [Google Scholar] [CrossRef]
- Silberstein, J.; Tuchman, S.; Grant, S.J. What Is Multiple Myeloma? JAMA 2022, 327, 497. [Google Scholar] [CrossRef] [PubMed]
- Nandra, T.K.; Devi, A.; Jones, J.R. Multiple Myeloma: What a Non-Haematologist Should Know. Clinical Medicine 2022, 22, 230. [Google Scholar] [CrossRef]
- Folkman, J.; Hanahan, D. Switch to the Angiogenic Phenotype during Tumorigenesis. Princess Takamatsu Symp 1991, 22, 339–347. [Google Scholar] [PubMed]
- Carmeliet, P. Mechanisms of Angiogenesis and Arteriogenesis. Nat Med 2000, 6, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Soares, R.; Schmitt, F. Angiogenesis: Now and Then. APMIS 2004, 112, 402–412. [Google Scholar] [CrossRef]
- Ribatti, D.; Gualandris, A.; Bastaki, M.; Vacca, A.; Iurlaro, M.; Roncali, L.; Presta, M. New Model for the Study of Angiogenesis and Antiangiogenesis in the Chick Embryo Chorioallantoic Membrane: The Gelatin Sponge/Chorioallantoic Membrane Assay. Journal of Vascular Research 1997, 34, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Steinhardt, M.J.; Truger, M.; Bittrich, M.; Zhou, X.; Noderer, J.; Riedhammer, C.; Xiao, X.; Gawlas, S.; Weis, P.; Eisele, F.; et al. Venetoclax Salvage Therapy in Relapsed/Refractory Multiple Myeloma. Haematologica 2023, 109, 979–981. [Google Scholar] [CrossRef]
- Bahlis, N.J.; Quach, H.; Baz, R.; Vangsted, A.J.; Ho, S.-J.; Abildgaard, N.; Laubach, J.; Ribrag, V.; Voorhees, P.M.; Wang, X.; et al. Venetoclax in Combination with Daratumumab and Dexamethasone Elicits Deep, Durable Responses in Patients with t(11;14) Relapsed/Refractory Multiple Myeloma: Updated Analyses of Minimal Residual Disease Negativity in Phase 1/2 Study. Blood 2023, 142, 338. [Google Scholar] [CrossRef]
- Costa, L.J.; Davies, F.E.; Monohan, G.P.; Kovacsovics, T.; Burwick, N.; Jakubowiak, A.; Kaufman, J.L.; Hong, W.-J.; Dail, M.; Salem, A.H.; et al. Phase 2 Study of Venetoclax plus Carfilzomib and Dexamethasone in Patients with Relapsed/Refractory Multiple Myeloma. Blood Advances 2021, 5, 3748–3759. [Google Scholar] [CrossRef]
- Willenbacher, E.; Jöhrer, K.; Willenbacher, W.; Flögel, B.; Greil, R.; Kircher, B. Pixantrone Demonstrates Significant in Vitro Activity against Multiple Myeloma and Plasma Cell Leukemia. Ann Hematol 2019, 98, 2569–2578. [Google Scholar] [CrossRef]
| Cancer Type | Main Cell Type Affected | Symptoms | Diagnostic Methods | Median Age at Diagnosis | Common Treatment Regime | 5-Year Survival Rate | |
|---|---|---|---|---|---|---|---|
| Leukaemia | Acute Lymphocytic Leukaemia (ALL) | Immature B lymphocytes (lymphoblasts) |
Fatigue, frequent infection, bruising, bone pain, swollen lymph nodes | Blood tests (CBC), BM biopsy, cytogenetic analysis | Younger patients, (17 years) [21] | Antimetabolites/Chemotherapy, Steroids, Asparaginase-Specific Enzyme Therapies, Targeted therapy (CAR-T, Bispecifics), Anthracyclines, SCT |
~90% (children), ~60% young adolescent, ~20-40% (adults) [21] |
| Chronic Lymphocytic Leukaemia (CLL) | Mature B lymphocytes | Fatigue, swollen lymph nodes, night sweats, weight loss, frequent infections | Blood tests (lymphocytosis), BM biopsy, biomarker testing | Older adults (~70 years) [22] |
Targeted therapy (Bruton Tyrosine/Phosphatidylinositol 3- Kinase/B-cell lymphoma 2- Inhibitors). Monoclonal Abs, Chemo(immuno-)therapy | ~90% [23], (advanced/cytogenetic dependent reduced survival) [22,24] | |
| Acute Myeloid Leukaemia (AML) | Myeloid precursors (myeloblasts) | Fatigue, fever, infections, anaemia, easy bruising, bleeding | Blood tests, BM biopsy, cytogenetic/biomarker analysis | Older adults (~69 years) [25] |
Induction chemo (cytarabine+anthracycline) (7+3 regimen), targeted therapies (e.g., FLT3 inhibitors), SCT | ~33% [25] | |
| Chronic Myeloid Leukaemia (CML) |
Myeloid cells (granulocytes) | Fatigue, weakness, bone pain, enlarged spleen, unexplained weight-loss | Blood tests, BM biopsy, cytogenetic/biomarker analysis | Older patients (~66 years) [26] | Targeted therapy (tyrosine kinase inhibitors), Immunotherapies, ASCT | ~71% [26] | |
| Lymphoma | Hodgkin’s Lymphoma | Mature B lymphocytes (Reed-Sternberg cells present) | Rapidly enlarging lymph nodes, night sweats, fever, weight loss, persistent cough | Biopsy of affected lymph node, PET/CT scan, biomarker analysis | Younger adults (~39 years) [27] | Chemotherapy, radiation, immunotherapy, SCT | ~90% [27] |
| Non-Hodgkin’s Lymphoma | Mature B lymphocytes (Reed-Sternberg cells absent) | Painless swollen lymph nodes, fatigue, fever, night sweats, cough, abdominal pain | Lymph node biopsy, biomarker analysis, imaging | Middle-aged to older adults (~68 years) [28] | Chemoimmunotherapy (e.g., R-CHOP), radiation, SCT | ~74% [28] | |
| Myeloma | Multiple Myeloma (Plasma Cell Myeloma) | Plasma cells | Bone pain, fractures, fatigue, anaemia, kidney dysfunction (CRAB symptoms) | Blood tests (M-protein, free light chain), BM biopsy, skeletal survey | Older adults (median ~70 years) [29] | Proteasome inhibitors, immunomodulators, Steroids, monoclonal Ab therapy, ASCT | ~62% [29] |
| Chick | Turkey | Quail | Ostrich/Emu | |
|---|---|---|---|---|
| Leukaemia | ✓[94,95,96,97] | ✓[91] | ✗[98]† | ✗ |
| Lymphoma | ✓[99,100,101,102] | ✓[91] | ✗ | ✗ |
| Myeloma | ✓[41,103,104,105,106] | ✓[91] | ✗ | ✗ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
