Submitted:
08 December 2025
Posted:
11 December 2025
You are already at the latest version
Abstract
Pure titanium (Ti) and its alloys are the "gold standard" for dental implants due to their stable titanium dioxide passive film providing excellent corrosion resistance in physiological environments. This study examined electrochemical interactions between Ti and cobalt-chromium-molybdenum alloy (CoCrMo), and between a novel Ti-Magnesium composite (BIACOM TiMg) and CoCrMo, when immersed in everyday solutions representing beverage or oral hygiene exposure. Test solutions included Coca-Cola®, lemon juice, Elmex® fluoride gel, Listerine® Cool Mint, and Sensodyne® fluoride paste. The immersion experiment paired Ti sticks with CoCrMo sticks, then BIACOM TiMg composite with CoCrMo sticks, with three measurements per configuration. Coca-Cola immersion increased electrochemical potential to ~983 mV for BIACOM TiMg and ~830 mV for CP4 titanium. Significant potential increases occurred in Elmex fluoride gel for both materials. Listerine Cool Mint and Sensodyne Fluoride exposures showed electrochemical interactions exceeding 200 mV. Marked differences in corrosion stability between CP4 titanium and BIACOM TiMg composite were confirmed. Findings indicate that material pairing and electrolyte environment significantly influence galvanic and corrosion behavior, with Ti-Mg composite showing higher susceptibility than CP4 titanium under tested conditions, impacting dental/biomedical material selection in oral environments.

Keywords:
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
- A cast rod of the CoCrMo alloy (commercial product: Heraenium P, Kulzer Mitsui Chemicals Group, Hanau, Germany) with a diameter of 1 mm and a length of 18 mm. The chemical composition of the alloy was: 59.0 wt% Co, 25.0 wt% Cr, 4.0 wt% Mo, 10.0 wt% Tungsten, 1.0 wt% Silicon, 0.8 wt% Manganese, and 0.2 wt% Nitrogen.
- A rod of commercially pure Ti (CP4 grade) with dimensions 2 mm × 2 mm × 10 mm produced by laser-sintering powder metallurgy at the Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb.
- A metal composite of CP-Ti and magnesium (BIACOM TiMg) with a diameter of 5 mm and a length of 11 mm, manufactured by low-temperature cold extrusion of Ti and Mg powders at the Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb.
2.2. Electrode Assembly
2.3. Solutions
2.4. Measurement of Electrochemical Potentials
2.5. Statistical Data Processing
3. Results
3.1. X-Ray Fluorescence Spectroscopy
3.2. Open-Circuit Potential Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Ti | Titanium |
| CoCrMo | Cobalt-chromium-molybdenum alloy |
| TiO₂ | Titanium dioxide |
| OCP | Open-circuit potential measurements |
References
- Eichner, K. Applications of Metal Alloys in Dentistry—A Review. Int. Dent. J. 1983, 33, 1–10. [Google Scholar]
- Xi, D.; Wong, L. Titanium and Implantology: A Review in Dentistry. J. Biol. Regul. Homeost. Agents 2021, 35, 63–72. [Google Scholar]
- Lee, J.J.; Song, K.Y.; Ahn, S.G.; Choi, J.Y.; Seo, J.M.; Park, J.M. Evaluation of Effect of Galvanic Corrosion between Nickel-Chromium Metal and Titanium on Ion Release and Cell Toxicity. J. Adv. Prosthodont. 2015, 7, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Taher, N.M.; Al Jabab, A.S. Galvanic Corrosion Behavior of Implant Suprastructure Dental Alloys. Dent. Mater. 2003, 19, 54–59. [Google Scholar] [CrossRef]
- Chen, W.Q.; Zhang, S.M.; Qiu, J. Surface Analysis and Corrosion Behavior of Pure Titanium under Fluoride Exposure. J. Prosthet. Dent. 2020, 124, 239.e1–239.e8. [Google Scholar] [CrossRef]
- Soares, F.M.S.; Elias, C.N.; Monteiro, E.S.; Coimbra, M.E.R.; Santana, A.I.C. Galvanic Corrosion of Ti Dental Implants Coupled to CoCrMo Prosthetic Component. Int. J. Biomater. 2021, 2021, 1313343. [Google Scholar] [CrossRef]
- Amine, M.; Merdma, W.; El Boussiri, K. Electrogalvanism in Oral Implantology: A Systematic Review. Int. J. Dent. 2022, 2022, 4575416. [Google Scholar] [CrossRef]
- Gittens, R.A.; Olivares-Navarrete, R.; Tannenbaum, R.; Boyan, B.D.; Schwartz, Z. Electrical Implications of Corrosion for Osseointegration of Titanium Implants. J. Dent. Res. 2011, 90, 1389–1397. [Google Scholar] [CrossRef]
- Kim, S.M. Oral Galvanism Related to Dental Implants. Maxillofac. Plast. Reconstr. Surg. 2023, 45, 36. [Google Scholar] [CrossRef] [PubMed]
- Schmalz, G.; Garhammer, P. Biological Interactions of Dental Cast Alloys with Oral Tissues. Dent. Mater. 2002, 18, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Tagger Green, N.; Machtei, E.E.; Horwitz, J.; Peled, M. Fracture of Dental Implants: Literature Review and Report of a Case. Implant Dent. 2002, 11, 137–143. [Google Scholar] [CrossRef]
- Ibrahim, A.M.H.; Takacova, M.; Jelenska, L.; Csaderova, L.; Balog, M.; Kopacek, J.; Svastova, E.; Krizik, P. The Effect of Surface Modification of TiMg Composite on the In-Vitro Degradation Response, Cell Survival, Adhesion, and Proliferation. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 127, 112259. [Google Scholar] [CrossRef]
- Procházková, J.; Podzimek, S.; Tomka, M.; Kucerová, H.; Mihaljevic, M.; Hána, K.; Miksovský, M.; Sterzl, I.; Vinsová, J. Metal Alloys in the Oral Cavity as a Cause of Oral Discomfort in Sensitive Patients. Neuro Endocrinol. Lett. 2006, 27 Suppl. S1, 53–58. [Google Scholar]
- Venugopalan, R.; Lucas, L.C. Evaluation of Restorative and Implant Alloys Galvanically Coupled to Titanium. Dent. Mater. 1998, 14, 165–172. [Google Scholar] [CrossRef]
- Tuna, S.H.; Pekmez, N.O.; Keyf, F.; Canli, F. The Electrochemical Properties of Four Dental Casting Suprastructure Alloys Coupled with Titanium Implants. J. Appl. Oral Sci. 2009, 17, 467–475. [Google Scholar] [CrossRef]
- Stanec, Z.; Halambek, J.; Maldini, K.; Balog, M.; Križik, P.; Schauperl, Z.; Ćatić, A. Titanium Ions Release from an Innovative Titanium-Magnesium Composite: An In Vitro Study. Acta Stomatol. Croat. 2016, 50, 40–48. [Google Scholar] [CrossRef]
- Mellado-Valero, A.; Muñoz, A.I.; Pina, V.G.; Sola-Ruiz, M.F. Electrochemical Behaviour and Galvanic Effects of Titanium Implants Coupled to Metallic Suprastructures in Artificial Saliva. Materials 2018, 11, 171. [Google Scholar] [CrossRef] [PubMed]
- Tahmasbi, S.; Ghorbani, M.; Masudrad, M. Galvanic Corrosion of and Ion Release from Various Orthodontic Brackets and Wires in a Fluoride-Containing Mouthwash. J. Dent. Res. Dent. Clin. Dent. Prospects 2015, 9, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Klok, O.; Igual Munoz, A.; Mischler, S. An Overview of Serum Albumin Interactions with Biomedical Alloys. Materials 2020, 13, 4858. [Google Scholar] [CrossRef] [PubMed]
- Royhman, D.; Radhakrishnan, R.; Yuan, J.C.; Mathew, M.T.; Mercuri, L.G.; Sukotjo, C. An Electrochemical Investigation of TMJ Implant Metal Alloys in an Artificial Joint Fluid Environment: The Influence of pH Variation. J. Craniomaxillofac. Surg. 2014, 42, 1052–1061. [Google Scholar] [CrossRef]
- Slama, H.; Cheniti, H.; Azem, S.; Nouveau, C.; Alhussein, A. Electrochemical Evaluation of Ti-Based High-Entropy Alloys in Artificial Saliva with Fluoride. Materials 2025, 18, 2973. [Google Scholar] [CrossRef]
- Vishnu, J.; Kesavan, P.; Shankar, B.; Dembińska, K.; Swiontek Brzezinska, M.; Kaczmarek-Szczepańska, B. Engineering Antioxidant Surfaces for Titanium-Based Metallic Biomaterials. J. Funct. Biomater. 2023, 14, 344. [Google Scholar] [CrossRef]
- Turkina, A.Y.; Makeeva, I.; Dubinin, O.; Polyakova, M.; Sokhova, I.; Babina, K.; Zaytsev, A.; Dormidontova, A. The Impact of Commercially Available Dry Mouth Products on the Corrosion Resistance of Common Dental Alloys. Materials 2023, 16, 4195. [Google Scholar] [CrossRef]
- Teixeira, J.V.U.; Pintão, C.A.F.; Correa, D.R.N.; Grandini, C.R. Ti-15Zr and Ti-15Zr-5Mo Biomaterials Alloys: An Analysis of Corrosion and Tribocorrosion Behavior in Phosphate-Buffered Saline Solution. Materials 2023, 16, 1826. [Google Scholar] [CrossRef]
- Bokobza, L. On the Use of Nanoparticles in Dental Implants. Materials 2024, 17, 3191. [Google Scholar] [CrossRef] [PubMed]
- Shemtov-Yona, K.; Miara, Y.; Rittel, D. Investigating the Integrity of Titanium-Oxide Nanolayers of Ti6Al4V under Chemo-Mechanical Stress. Dent. Mater. 2025. [Google Scholar] [CrossRef]
- Pellegrini, G.; Francetti, L.; Barbaro, B.; Del Fabbro, M. Novel Surfaces and Osseointegration in Implant Dentistry. J. Investig. Clin. Dent. 2018, 9, e12349. [Google Scholar] [CrossRef] [PubMed]
- Igual-Muñoz, A.; Jolles, B.M.; Mischler, S. Influence of Different Sterilization Methods on the Surface Chemistry and Electrochemical Behavior of Biomedical Alloys. Bioengineering 2023, 10, 749. [Google Scholar] [CrossRef]
- Javadi, A.; Solouk, A.; Haghbin-Nazarpak, M.; Kruppke, B.; Hacker, M.C.; Shokrgozar, M.A. Metal Ion Release from Flash Plasma Electrolytic Oxidation-Coated Ti6Al4V DMLS Alloy for Orthopedic Implants Applications. J. Funct. Biomater. 2025, 16, 362. [Google Scholar] [CrossRef]
- Chaturvedi, T.P. An Overview of the Corrosion Aspect of Dental Implants (Titanium and Its Alloys). Indian J. Dent. Res. 2009, 20, 91–98. [Google Scholar] [CrossRef]
- Yilmazer, H.; Ozkan, D.; Gok, M.S.; Kanca, Y.; Acar, S.; Findik, F.; Gulsoy, H.O.; Mutlu, I. Investigation of the Effect of High Pressure Torsion and Solution Treatment on the Corrosion and Tribocorrosion Behavior of CoCrMo Alloy for Biomedical Applications. Crystals 2023, 13, 590. [Google Scholar] [CrossRef]
- Guindy, J.S.; Schiel, H.; Schmidli, F.; Wirz, J. Corrosion at the Marginal Gap of Implant-Supported Suprastructures and Implant Failure. Int. J. Oral Maxillofac. Implants 2004, 19, 826–831. [Google Scholar] [PubMed]
- Van Loven, K.; Jacobs, R.; Swinnen, A.; Van Huffel, S.; Van Hees, J.; van Steenberghe, D. Sensations and Trigeminal Somatosensory-Evoked Potentials Elicited by Electrical Stimulation of Endosseous Oral Implants in Humans. Arch. Oral Biol. 2000, 45, 1083–1090. [Google Scholar] [CrossRef]
- Martin, M.D.; Broughton, S.; Drangsholt, M. Oral Lichen Planus and Dental Materials: A Case-Control Study. Contact Dermatitis 2003, 48, 331–336. [Google Scholar] [CrossRef] [PubMed]




| Element | wt % |
|---|---|
| Ti | 90.34 |
| Al | 5.29 |
| V | 4.20 |
| Fe | 0.18 |
| Element | wt % |
|---|---|
| Co | 60.50 |
| Cr | 23.21 |
| Mo | 4.69 |
| W | 4.97 |
| Al | 6.62 |
| P | 0.02 |
| Sensodyne CP4 Titan | Sensodyne BIACOM TiMg | Lemon juice CP4 Titan | Lemon juice BIACOM TiMg | Elmex gel CP4 Titan | Elmex gel BIACOM TiMg | Listerine CP4 Titan | Listerine BIACOM TiMg | Coca Cola CP4 Titan | Coca Cola BIACOM TiMg | |
| Range | 0.104 | 0.206 | 0.141 | 0.328 | 0.736 | 0.566 | 0.09 | 0.078 | 0.501 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
