Submitted:
02 December 2025
Posted:
05 December 2025
You are already at the latest version
Abstract
Older adults with multiple diseases are likely to be prescribed multiple medications including anticholinergic agents, which are frequently prescribed to manage conditions such as overactive bladder and chronic obstructive pulmonary disease and Parkinson’s disease. Overactive bladder (OAB) has been the subject of increased disease awareness and is a common and significant cause of reduced quality of life, particularly in the elderly. The selective β3 adrenoceptor agonist, mirabegron was developed for the pharmacological treatment of OAB. Mirabegron has been shown to exert off-target effects on various functional proteins such as muscarinic receptors in rat tissues. This agent may relax the detrusor muscle by activating β3 adrenoceptors and also antagonizing muscarinic receptors. Mirabegron and antimuscarinics exerted additive effects on muscarinic receptor binding and relaxant responses of cholinergic contractions of the detrusor muscle. Mirabegron excreted in human urine appears to directly attenuate muscarinic receptor-mediated functions in the bladder. Combination therapy of mirabegron and solifenacin in patients with OAB may enhance not only their therapeutic effects on OAB, but also increase the risk of anticholinergic adverse effects. Therefore, the safety of concomitant use of mirabegron and other drugs such as antimuscarinics for elderly patients needs to be carefully considered.
Keywords:
1. Anticholinergic Burden
2. Off-Target Effects of Mirabegron on Muscarinic Receptors
3. Combination Therapy of Mirabegron and Antimuscarinic Agents
6. Conclusion
Author Contributions
Funding
Acknowledgments
Conflict of Interest
References
- Kojima, T; Akishita, M; Kameyama, Y; Yamaguchi, K; Yamamoto, H; Eto, M; et al. High risk of adverse drug reactions in elderly patients taking six or more drugs: Analysis of inpatient database. Geriatr Gerontol Int 2012, 12, 761–762. [Google Scholar] [CrossRef]
- Ruxton, K.; Woodman, R.J.; Magoni, A.A. Drugs with anticholinergic effects and cognitive impairment, falls and all-cause mortality in older adults. A systematic review and meta-analysis. Br J Clin Pharmacol 2015, 80, 209–220. [Google Scholar] [CrossRef]
- Salahudeen, M.S.; Duffull, S.B.; Nishtaka, P.S. Anticholinergic burden quantified by anticholinergic risk scales and adverse outcomes in older people: A systematic review. BMC Geriatr 2015, 15, 31. [Google Scholar] [CrossRef]
- Tune, L.E. Anticholinergic effects of medication in elderly patients. J Clin Psychiatry 2011, 62 Suppl. 21, 11–14. [Google Scholar]
- Araklitis, G.; Robinson, D.; Cardozo, L. Cognitive effects of anticholinergic load in women with overactive bladder. Clin Interv Aging 2020, 15, 1493–1503. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Klotz, U. Age-related changes in pharmacokinetics. Curr Drug Metab 2011, 12, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Montagne, A.; Barnes, S.R.; Sweeney, M.D.; Halliday, M.R.; Sagare, A.P.; Zhao, Z.; et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 2015, 85, 296–302. [Google Scholar] [CrossRef]
- Shiota, T.; Torimoto, K.; Okuda, M.; Iwata, R.; Kumamoto, H.; Miyake, M.; et al. Cognitive burden and polypharmacy in elderly Japanese patients treated with anticholinergics for an overactive bladder. Low Urin Tract Symptoms 2020, 12, 54–61. [Google Scholar] [CrossRef]
- Chew, M.L.; Mulsant, B.H.; Pollock, B.G.; Lehman, M.E.; Greenspan, A.; Mahmoud, R.A.; et al. Anticholinergic activity of 107 medications commonly used by older adults. J Am Geriatr Soc 2008, 56, 1333–1341. [Google Scholar] [CrossRef]
- Rudolph, J.L.; Salow, M.J.; Angelini, M.C.; McGlinchey, R.E. The anticholinergic risk scale and anticholinergic adverse effects in older persons. Arch Intern Med 2008, 168, 508–513. [Google Scholar] [CrossRef]
- The 2019 American Geriatrics Society Beers Criteria® Update Expert Panel: American Geriatrics Society 2019 Updated AGS Beers Criteria® for potentially inappropriate medication use in older adults. J Am Geriatr Soc 2019, 67, 674–694. [CrossRef]
- Jun, K.; Hwang, S.; Ah, Y.-M.; Suh, Y.; Lee, J.-Y. Development of an anticholinergic burden scale specific for Korean older adults. Geriatr Gerontol Int 2019, 19, 628–634. [Google Scholar] [CrossRef]
- Yamada, S.; Mochizuki, M.; Chimoto, J.; Futokoro, R.; Kagota, S.; Shinozuka, K. Development of a pharmacological evidence-based anticholinergic burden scale for medications commonly used in older adults. Geriatr Gerontol Int 2023, 23, 558–564. [Google Scholar] [CrossRef]
- Yamada, S.; Mochizuki, M.; Atobe, K.; Kato, Y. Pharmacokinetic and pharmacodynamic consideration for the anticholinergic burden scale of drugs. (review). Geriatr Gerontol Int 2024, 24, 81–87. [Google Scholar] [CrossRef]
- Yamada, S.; Mochizuki, M. Anticholinergic adverse events by polypharmacy and anticholinergic burden score. Jap J Geriatr. 2024, 61, 256–270. (In Japanese) [Google Scholar]
- Mizokami, F.; Mizuno, T.; Taguchi, R.; Nasu, I.; Arai, S.; Higashi, K.; et al. Japanese Society of Geriatric Pharmacy Working Group on Japanese Anticholinergic Risk Scale. Development of the Japanese anticholinergic risk scale: English translation of the Japanese article. Geriatri Gerontol Int 2025, 25, 5–13. [Google Scholar] [CrossRef]
- Kagota, S.; Futokoro, R.; Maruyama-Fumoto, K.; Chimoto, J.; Yamada, S.; Shinozuka, K. Functional anticholinergic activity of drugs classified as strong and moderate on the anticholinergic burden scale on bladder and ileum. Basic Clin Pharmacol Toxicol 2024, 135, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Ito, Y.; Nishijima, S.; Kadekawa, K.; Sugaya, K. Basic and clinical aspects of antimuscarinic agents used to treat overactive bladder. Pharmacol Ther 2018, 189, 130–148. [Google Scholar] [CrossRef] [PubMed]
- Takasu, T.; Ukai, M.; Sato, S.; Matsui, T.; Nagase, I.; Maruyama, T.; et al. Effect of (R)-2-(2-Aminothiazol-4-yl)-4′-{2-[(2-hydroxy-2-phenylethyl)amino]ethyl} Acetanilide (YM178), A novel selective β3-adrenoceptor agonist, on bladder function. J Pharmacol Exp Ther 2007, 321, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Chapple, C.R.; Kaplan, S.A.; Mitcheson, D.; Kleckal, J.; Cummings, J.; Drogendijk, T.; et al. Randomized double-blind, active-controlled phase 3 study to assess 12-month safety and efficacy of mirabegron, a b3-adrenoceptor agonist, in overactive bladder. Eur Urol 2013, 63, 296–305. [Google Scholar] [CrossRef]
- Michel, MC; Korstanje, C. β3-adrenoceptor agonists for overactive bladder syndrome: Role of translational pharmacology in a repositioning clinical drug development project. Pharmacol Ther 2016, 159, 66–82. [Google Scholar] [CrossRef]
- Di Salvo, J.; Nagabukuro, H.; Wickham, L.A.; Abbadie, C.; DeMartino, J.A.; Fitzmaurice, A.; et al. Pharmacological characterization of a novel beta3 adrenergic agonist, vibegron: Evaluation of antimuscarinic receptor selectivity for combination therapy for overactive bladder. J Pharmacol Exp Ther. 2017, 360, 346–355. [Google Scholar] [CrossRef]
- Dehvari, N.; da Silva Junior, E.D.; Bengtsson, T.; Hutchinson, D.S. Mirabegron: Potential off target effects and uses beyond the bladder. Br J Pharmacol 2018, 175, 4072–4082. [Google Scholar] [CrossRef]
- Alexandre, E.C.; Kiguti, L.R.; Calmasini, F.B.; Silva, F.H.; da Silva, K.P.; Ferreira, R.; et al. Mirabegron relaxes urethral smooth muscle by a dual mechanism involving β3-adrenoceptor activation and α1-adrenoceptor blockade. Br J Pharmacol 2016, 173, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Calmasini, F.B.; Candido, T.Z.; Alexandre, E.C.; D'Ancona, C.A.; Silva, D.; de Oliveira, M.A.; et al. The beta-3 adrenoceptor agonist, mirabegron relaxes isolated prostate from human and rabbit: New therapeutic indication? Prostate 2015, 75, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.; Michel, M.C.; Lee, X.W.; Kaumann, A.J.; Molenaar, P. The β3-adrenoceptor agonist mirabegron increases human atrial force through β1-adrenoceptors: An indirect mechanism? Br J Pharmacol 2017, 174, 2706–2715. [Google Scholar] [CrossRef] [PubMed]
- Takusagawa, S.; Miyashita, A.; Iwatsubo, T.; Usui, T. In vitro inhibition and induction of human cytochrome P450 enzymes by mirabegron, a potent and selective β3-adrenoceptor agonist. Xenobiotica 2012, 42, 1187–1896. [Google Scholar] [CrossRef]
- Takusagawa, S.; Yajima, K.; Miyashita, A.; Uehara, S.; Iwatsubo, T.; Usui, T. Identification of human cytochrome P450 isoforms and esterases involved in the metabolism of mirabegron, a potent and selective β3-adrenoceptor agonist. Xenobiotica 2012, 42, 957–967. [Google Scholar] [CrossRef]
- Department of Health Therapeutic Goods Administration: Australian Public Assessment Report for Mirabegron. 2014. Available online: https://www.tga.gov.au/auspar/auspar-mirabegron.
- Groen-Wijnberg, M.; van Dijk, J.; Krauwinkel, W.; Kerbusch, V.; Meijer, J.; Tretter, R.; et al. Pharmacokinetic interactions between mirabegron and metformin, warfarin, digoxin or combined oral contraceptives. Eur J Drug Metab Pharmacokinet 2017, 42, 417–429. [Google Scholar] [CrossRef]
- Yamada, S.; Chimoto, J.; Shiho, M.; Okura, T.; Morikawa, K.; Wakuda, H.; et al. Possible involvement of muscarinic receptor blockade in mirabegron therapy for patients with overactive bladder. J Pharmacol Exp Ther 2021, 377, 201–206. [Google Scholar] [CrossRef]
- Yamada, S.; Chimoto, J.; Shiho, M.; Okura, T.; Morikawa, K.; Kagota, S.; et al. Muscarinic receptor binding activity in rat tissues by vibegron and prediction of its receptor occupancy levels in the human bladder. Int J Urol 2021, 28, 1298–1303. [Google Scholar] [CrossRef] [PubMed]
- Rudmann, D.G. On-target and off-target-based toxicologic effects. Toxicol Pathol 2013, 41, 310–314. [Google Scholar] [CrossRef]
- Chou, C.K.; Liu, Y.L.; Chen, Y.; Huang, P.-J.; Tsou, P.-H.; Chen, C.-T.; et al. Digital receptor occupancy assay in quantifying on- and off-target binding affinities of therapeutic antibodies. ACS Sens 2020, 5, 296–302. [Google Scholar] [CrossRef]
- Cernecka, H.; Kersten, K.; Maarsingh, H.; Elzinga, C.R.; de Jong, I.J.; Korstanje, C.; et al. β3-adrenoceptor-mediated relaxation of rat and human urinary bladder: Roles of BKCa channels and rho kinase. Naunyn Schmiedebergs Arch Pharmacol 2015, 388, 749–759. [Google Scholar] [CrossRef]
- Svalø, J.; Nordling, J.; Bouchelouche, K.; Andersson, K.E.; Korstanje, C.; Bouchelouche, P. The novel β3-adrenoceptor agonist mirabegron reduces carbachol-induced contractile activity in detrusor tissue from patients with bladder outflow obstruction with or without detrusor overactivity. Eur J Pharmacol 2013, 699, 101–105. [Google Scholar] [CrossRef]
- Krauwinkel, W.; van Dijk, J.; Schaddelee, M.; Eltink, C.; Meijer, J.; Strabach, G.; et al. Pharmacokinetic properties of mirabegron, a β3-adrenoceptor agonist: Results from two phase I, randomized, multiple-dose studies in healthy young and elderly men and women. Clin Ther 2012, 34, 2144–2160. [Google Scholar] [CrossRef] [PubMed]
- Igawa, Y.; Aizawa, N.; Michel, M.C. b3-Adrenoceptors in the normal and diseased urinary bladder-what are the open questions? Br. J. Pharmacol 2019, 176, 2525–2538. [Google Scholar] [CrossRef] [PubMed]
- Dale, P.R.; Cernecka, H.; Schmidt, M.; Dowling, M.R.; Charlton, S.J.; Pieper, M.P.; et al. The pharmacological rationale for combining muscarinic receptor antagonists and b-adrenoceptor agonists in the treatment of airway and bladder disease. Curr Opin Pharmacol 2014, 16, 31–42. [Google Scholar] [CrossRef]
- Huang, R.; Tamalunas, A.; Waidelich, R.; Strittmatter, F.; Stief, C.G.; Hennenberg, M. Inhibition of full smooth muscle contraction in isolated human detrusor tissues by mirabegron is limited to off-target inhibition of neurogenic contractions. J Pharmacol Exp Ther 2022, 381, 176–187. [Google Scholar] [CrossRef]
- Ito, Y.; Oyunzul, L.; Seki, M.; Fujino Oki, T.; Matsui, M.; Yamada, S. Quantitative analysis of the loss of muscarinic receptors in various peripheral tissues in M1-M5 receptor single knockout mice. Br J Pharmacol 2009, 156, 1147–1153. [Google Scholar] [CrossRef]
- Oki, T.; Takagi, Y.; Inagaki, S.; Taketo, M.M.; Manabe, T.; Matsui, M.; et al. Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. Brain Res Mol Brain Res 2005, 133, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Noronha-Blob, L.; Lowe, V.; Patton, A.; Canning, B.; Costello, D.; Kinnier, W.J. Muscarinic receptors: Relationships among phosphoinositide breakdown, adenylate cyclase inhibition, in vitro detrusor muscle contractions and in vivo cystometrogram studies in guinea pig bladder. J Pharmacol Exp Ther 1989, 249, 843–851. [Google Scholar] [CrossRef]
- Matsui, M.; Griffin, M.T.; Shehnaz, D.; Taketo, M.M.; Ehlert, F.J. Increased relaxant action of forskolin and isoproterenol against muscarinic agonist-induced contractions in smooth muscle from M2 receptor knockout mice. J Pharmacol Exp Ther. 2003, 305, 106–113. [Google Scholar] [CrossRef]
- Ehlert, F.J.; Griffin, M.T.; Abe, D.M.; Vo, T.H.; Taketo, M.M.; Manabe, T.; et al. The M2 muscarinic receptor mediates contraction through indirect mechanisms in mouse urinary bladder. J Pharmacol Exp Ther 2005, 313, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Ehlert, F.J.; Simon Ahn, S.; Pak, K.J.; Park, G.J.; Sangnil, M.S.; Tran, J.A.; et al. Neuronally released acetylcholine acts on the M2 muscarinic receptor to oppose the relaxant effect of isoproterenol on cholinergic contractions in mouse urinary bladder. J Pharmacol Exp Ther 2007, 322, 631–637. [Google Scholar] [CrossRef]
- Kelleher, C.; Hakimi, Z.; Zur, R.; Siddiqui, E.; Maman, K.; Aballéa, S.; et al. Efficacy and tolerability of mirabegron compared with antimuscarinic monotherapy or combination therapies for overactive bladder: A systematic review and network meta-analysis. Eur Urol 2018, 74, 324–333. [Google Scholar] [CrossRef]
- Herschorn, S.; Chapple, C.R.; Abrams, P.; Arlandis, S.; Mitcheson, D.; Lee, K.-S.; et al. Efficacy and safety of combinations of mirabegron and solifenacin compared with monotherapy and placebo in patients with overactive bladder (SYNERGY Study). BJU Int 2017, 120, 562–575. [Google Scholar] [CrossRef]
- Soliman, M.G.; El-Abd, S.; El-Gamal, O.M.; Raheem, A.A.; Abou-Ramadan, A.R.; El-Abd, A.S. Mirabegron versus solifenacin in children with overactive bladder: Prospective randomized single-blind controlled trial. Urol Int 2021, 105, 1011–1017. [Google Scholar] [CrossRef]
- Yamada, S.; Mochizuki, M.; Maruyama-Fumoto, K.; Kagota, S.; Shinozuka, K. Additive effects of mirabegron on muscarinic receptor binding and on relaxation of cholinergic detrusor muscle contraction by antimuscarinics. J Pharmacol Sci 2025, 58, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Kim, A.; Choo, M.-S. Additional low-dose antimuscarinics can improve overactive bladder symptoms in patients with suboptimal response to beta 3 agonist monotherapy. Investig Clin Urol 2017, 58, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Sugaya, K.; Yamagami, H.; Nishijima, S.; Kadekawa, K.; Hizue, M.; Ito, Y.; et al. Effects of combined treatment with fesoterodine and mirabegron in a pelvic congestion rat model: Results from in vitro and in vivo functional studies. Lower Urinary Tract Symptoms 2020, 12, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Iitsuka, H.; Tokuno, T.; Amada, Y.; Matsushima, H.; Katashima, M.; Sawamoto, T.; et al. Pharmacokinetics of mirabegron, a b3-adrenoceptor agonist for treatment of overactive bladder, in healthy Japanese male subjects: Results from single- and multiple-dose studies. Clin Drug Investig 2014, 34, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Eltink, C.; Lee, J.; Schaddelee, M.; Zhang, W.; Kerbusch, V.; Meijer, J.; et al. Single dose pharmacokinetics and absolute bioavailability of mirabegron, b3-adrenoceptor agonist for treatment of overactive bladder. Int J Clin Pharm Ther. 2012, 50, 838–49. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
