Submitted:
03 December 2025
Posted:
05 December 2025
You are already at the latest version
Abstract
Keywords:
1.0. Background
1.1. Background of DDOS
1.2. History
1.3. Architecture

2.0. Discussion on Security Issues
2.1. Scenario 1: AWS DDoS Attack in 2020
Connectionless Lightweight Directory Access Protocol (CLDAP)


2.2. Scenario 2: Microsoft Azure (2021)


3.0. Discussion on Security Countermeasures
3.1. Security Countermeasures
3.1.1. Blackhole Routing

3.1.2. Filtering and Limiting

3.1.2.1. Pushback High-Bandwidth Aggregates
3.1.3. Stateless Internet Flow Filter (SIFF)
3.2. Proposed Countermeasures
3.2.1. Dynamic Traffic Analysis and Adaptive Filtering

3.2.2. Blockchain-Based Traffic Authentication
4.0. Conclusion
5.0. Awareness Video

References
- Tolu, D. Detection of Denial of Service Attack (DOS). [online] ResearchGate. ResearchGate. 2021. Available online: https://www.researchgate.net/publication/350873961_Detection_of_Denial_of_Servic.
- Ullrich, Johannes. Exposed Windows Domain Controllers Used in CLDAP DDoS Attacks. [online]. 2020. Available online: https://isc.sans.edu/diary/Exposed+Windows+Domain+Controllers+Used+in+CLDA.
- Olzak, Tom. How CLDAP Reflectors Enable DDoS Attacks & Ways to Reduce Your Exposure. [online]. 2022. Available online: https://www.spiceworks.com/it-security/cyber-risk-management/articles/defending-ag.
- Costa, J.; Robson. Reflector Saturation in Amplified Reflection Denial of Service Attack Abusing CLDAP and Memcache Protocols. Communications in computer and information science 2024, 248–263. [Google Scholar] [CrossRef]
- Mohan, D. What Are CLDAP Attacks? What Are The Risks And Impacts Of Such Attacks? [online] Prophaze. 2024. Available online: https://prophaze.com/web-application-firewall/what-are-cldap-attacks/.
- A Review of Amplification-based Distributed Denial of Service Attacks and Mitigation. Computers & Security 2021, 102380. [CrossRef]
- Cybersecurity and Infrastructure Security Agency CISA. DNS Amplification Attacks|CISA. 2019. Available online: https://www.cisa.gov/news-events/alerts/2013/03/29/dns-amplification-attacks.
- Khormali, A.; Park, J.; Alasmary, H.; Anwar, A.; Saad, M.; Mohaisen, D. Domain name system security and privacy: A contemporary survey. Computer Networks 2021, 185, 107699. [Google Scholar] [CrossRef]
- Learning Center. What is Blackholing | Mitigating DDoS Attacks | Imperva. [online] . Available online: https://www.imperva.com/learn/ddos/blackholing/#:~:text=Blackholing%20involves%20redirecting%20traffic%20to.
- Cloudflare. What is DDoS Blackhole Routing? Available online: https://www.cloudflare.com/learning/ddos/glossary/ddos-blackhole-routing/.
- Kumarasamy, S. Distributed Denial of Service (DDOS) Attacks Detection Mechanism. International Journal of Computer Science, Engineering and Information Technology 2011, 1(5), 39–49. [Google Scholar] [CrossRef]
- Zeb, K.; Baig, O.; Asif, M.K. DDoS attacks and countermeasures in cyberspace. 2015 2nd World Symposium on Web Applications and Networking (WSWAN), 2015. [Google Scholar] [CrossRef]
- Mahajan, R.; Bellovin, S.M.; Floyd, S.; Ioannidis, J.; Paxson, V.; Shenker, S. Controlling high bandwidth aggregates in the network. ACM SIGCOMM Computer Communication Review 2002, 32(3), 62–73. [Google Scholar] [CrossRef]
- Mahajan, R.; Bellovin, S.M.; Floyd, S.; Ioannidis, J.; Paxson, V.; Shenker, S. Aggregate congestion control. ACM SIGCOMM Computer Communication Review 2002, 32(1), 69. [Google Scholar] [CrossRef]
- Yaar, A.; Perrig, A.; Song, D. SIFF: A Stateless Internet Flow Filter to Mitigate DDoS Flooding Attacks *. [online]. Available online: https://users.ece.cmu.edu/~adrian/projects/siff.pdf (accessed on 19 June 2024).
- Azure, M. Azure DDoS Protection—2021 Q3 and Q4 DDoS attack trends . 2023. Available online: https://azure.microsoft.com/en-us/blog/azure-ddos-protection-2021-q3-and-q4-ddos-at.
- Heredia, R. 'What Are IoT Sensors? Types, Uses, and Examples. zipitwireless.com. 30 August 2021. Available online: https://www.zipitwireless.com/blog/what-are-iot-sensors-types-uses-and-examples.
- Sharma, M. Microsoft Azure repels whopping 2.4 Tbps DDoS attack. TechRadar. 12 October 2021. Available online: https://www.techradar.com/news/microsoft-azure-repels-whopping-24-tbps-ddos-attac.
- IBM. What are Convolutional Neural Networks? | IBM. [online] www.ibm.com. 2023. Available online: https://www.ibm.com/topics/convolutional-neural-networks.
- Vyas, s; Nick, d; Oliver, s; Kobus, v; Hui, z. Large-scale Automated DDoS detection SystemAvailable at. Available online: https://www.usenix.org/legacy/event/usenix06/tech/full_papers/sekar/sekar_html/ (accessed on 28 June 2024).
- Wiley Online Library. Scientific Research Articles, journals, books, and reference works. Available online: https://onlinelibrary.wiley.com/ (accessed on 28 June 2024).
- Cui, Yunhe; et al. Towards ddos detection mechanisms in software-defined networking. Journal of Network and Computer Applications. 2021. Available online: https://www.sciencedirect.com/science/article/pii/S1084804521001703?casa_token= (accessed on 28 June 2024).
- Cvitić; Perakovic, D.; Gupta, B. B.; Choo, K. -K. R. Boosting-Based DDoS Detection in Internet of Things Systems doi: 10.1109/JIOT.2021.3090909. keywords: {Computer crime;Internet of Things;Smart homes;Servers;Feature extraction;Electronic mail;Telecommunication traffic;Artificial intelligence;cybersecurity;Distributed Denial of Service (DDoS);ensemble machine learning;IDS;Internet of Things (IoT);supervised learning. IEEE Internet of Things Journal 2022, vol. 9(no. 3), 2109–2123. [Google Scholar]
- Hosseini a b, Soodeh; et al. The hybrid technique for ddos detection with supervised learning algorithms, Computer Networks. 2019. Available online: https://www.sciencedirect.com/science/article/pii/S1389128618306881?casa_token=i (accessed on 28 June 2024).
- Pande, S.; et al. DDOS detection using machine learning technique. SpringerLink. 1970. Available online: https://link.springer.com/chapter/10.1007/978-981-15-8469-5_5 (accessed on 28 June 2024).
- Priya, S. S.; Sivaram, M.; Yuvaraj, D.; Jayanthiladevi, A. Machine Learning based DDOS Detection keywords: {Computer crime;Servers;Classification algorithms;Machine learning;Computer hacking;Machine learning algorithms;Floods;Machine learning;DDoS detection. 2020 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 2020; pp. 234–237. [Google Scholar] [CrossRef]
- GeeksforGeeks. Neural Networks | A beginners guide. 2019. Available online: https://www.geeksforgeeks.org/neural-networks-a-beginners-guide/.
- DeviceAuthority. Symmetric Encryption vs Asymmetric Encryption: How it Works and Why it’s Used. Device Authority. 2023. Available online: https://deviceauthority.com/symmetric-encryption-vs-asymmetric-encryption/#:~:text=There%20are%20two%20.
- Learning Center. What is Blackholing | Mitigating DDoS Attacks | Imperva. Available online: https://www.imperva.com/learn/ddos/blackholing/#:~:text=Blackholing%20involves%20redirecting%20traffic%20to.
- Learning Center. What is Rate Limiting | Types & Algorithms | Imperva. Available online: https://www.imperva.com/learn/application-security/rate-limiting/.
- Lutkevich, B. What is a Digital Signature? [online] SearchSecurity. Available at: https://www.techtarget.com/searchsecurity/definition/digital-signature. 2021. [Google Scholar]
- Ngo, Q.-D.; Nguyen, H.-T.; Nguyen, L.-C.; Nguyen, D.-H. A survey of IoT malware and detection methods based on static features. ICT Express 2020, 6(4), 280–286. [Google Scholar] [CrossRef]
- Microsoft. Digital signatures and certificates - Microsoft Support. Available online: https://support.microsoft.com/en-us/office/digital-signatures-and-certificates-8186cd1.
- Kim, T.H.; Reeves, D. A survey of domain name system vulnerabilities and attacks. Journal of Surveillance, Security and Safety 2020. [Google Scholar] [CrossRef]
- Brooks, R.R.; Ozcelik, I.; Yu, L.; Oakley, J.; Tusing, N. Distributed Denial of Service (DDoS): A History. IEEE Annals of the History of Computing 2021, 1. [Google Scholar] [CrossRef]
- Alcoz, A.G.; Strohmeier, M.; Lenders, V.; Vanbever, L. Aggregate-based congestion control for pulse-wave DDoS defense. In Proceedings of the ACM SIGCOMM 2022 Conference, 2022. [Google Scholar] [CrossRef]
- docs.aws.amazon.com. UDP Reflection Attacks - AWS Best Practices for DDoS Resiliency . Available online: https://docs.aws.amazon.com/whitepapers/latest/aws-best-practices-ddos-resiliency/u.
- GlobalDots, P.K. Solutions Engineer @ How DDoS Works: Beginners Guide. GlobalDots. 2023. Available online: https://www.globaldots.com/resources/blog/how-ddos-works/ (accessed on 28 June 2024).
- Ibeakanma, C. What Are TCP and UDP Ports? [online] MUO. 2022. Available online: https://www.makeuseof.com/what-are-tcp-and-udp-ports/.
- IBM. What is Ransomware? [online] www.ibm.com . 2022. Available online: https://www.ibm.com/topics/ransomware.
- IBM. What are Convolutional Neural Networks? | IBM. www.ibm.com. 2023. Available online: https://www.ibm.com/topics/convolutional-neural-networks.
- Mariani, V. What is an Internet Filtering Software and why it is used. FlashStart. 2022. Available online: https://flashstart.com/internet-filtering-software-what-it-is-and-why-it-is-used/.
- Namane, S.; Ahmim, M.; Kondoro, A.; Dhaou, I.B. Blockchain-Based Authentication Scheme for Collaborative Traffic Light Systems Using Fog Computing. Electronics 2023, 12(2), 431. [Google Scholar] [CrossRef]
- Newman, L. A 1.3-Tbs DDoS Hit GitHub, the Largest Yet Recorded . WIRED. 2018. Available online: https://www.wired.com/story/github-ddos-memcached/.
- www.radware.com. What is rate limiting and how does it work? | Radware. [online]. Available online: https://www.radware.com/cyberpedia/bot-management/rate-limiting/.
- Yang, H.; Li, Y. A Blockchain-Based Anonymous Authentication Scheme for Internet of Vehicles. Procedia Computer Science 2022, 201, 413–420. [Google Scholar] [CrossRef]
- Lopez-Martin, M.; et al. ‘Network traffic classifier with convolutional and recurrent neural networks for internet of things’. IEEE Access 2017, 5, 18042–18050. [Google Scholar] [CrossRef]
- Radford, B.J.; et al. Network traffic anomaly detection using recurrent neural networks, arXiv.org. 2018. [Google Scholar] [CrossRef]
- Meng, W.; Li, W.; Zhou, J. ‘Enhancing the security of blockchain-based software defined networking through Trust-based traffic fusion and filtration’. Information Fusion 2021, 70, 60–71. [Google Scholar] [CrossRef]
- Zheng, Z.; et al. ‘Blockchain challenges and opportunities: A survey’. International Journal of Web and Grid Services 2018, 14(4), 352. [Google Scholar] [CrossRef]
- Khalil, M. I.; Humayun, M.; Jhanjhi, N. Z.; Talib, M. N.; Tabbakh, T. A. Multi-class segmentation of organ at risk from abdominal ct images: A deep learning approach. In Intelligent Computing and Innovation on Data Science: Proceedings of ICTIDS 2021; Springer Nature Singapore: Singapore, 2021; pp. 425–434. [Google Scholar]
- Humayun, M.; Jhanjhi, N. Z.; Niazi, M.; Amsaad, F.; Masood, I. Securing drug distribution systems from tampering using blockchain. Electronics 2022, 11(8), 1195. [Google Scholar] [CrossRef]
- Sama, N. U.; Zen, K.; Jhanjhi, N. Z.; Humayun, M. Computational Intelligence Ethical Issues in Health Care. In Computational Intelligence in Healthcare Informatics; Springer Nature Singapore: Singapore, 2024; pp. 349–362. [Google Scholar]
- Yan, O. J.; Ashraf, H.; Ihsan, U.; Jhanjhi, N.; Ray, S. K. Facial expression recognition (FER) system using deep learning. 2024 IEEE 1st Karachi Section Humanitarian Technology Conference (KHI-HTC), 2024, January; IEEE; pp. 1–11. [Google Scholar]
- Tayyab, M.; Hameed, K.; Jhanjhi, N. Z.; Zaheer, A.; Qamar, F. Digital safeguards: Navigating cyber threats in the logistics industry framework. In Navigating cyber threats and cybersecurity in the logistics industry; IGI Global Scientific Publishing, 2024; pp. 258–299. [Google Scholar]
- Khandelwal, M.; Rout, R. K.; Umer, S.; Sahoo, K. S.; Jhanjhi, N. Z.; Shorfuzzaman, M.; Masud, M. A Pattern Classification Model for Vowel Data Using Fuzzy Nearest Neighbor. Intelligent Automation & Soft Computing 2023, 35(3). [Google Scholar]
- Pandian, M. T.; Chouhan, K.; Kumar, B. M.; Dash, J. K.; Jhanjhi, N. Z.; Ibrahim, A. O.; Abulfaraj, A. W. RETRACTED: Improving Efficiency of Large RFID Networks Using a Clustered Method: A Comparative Analysis. Electronics 2022, 11(18), 2968. [Google Scholar] [CrossRef]
- Humayun, M.; Sujatha, R.; Almuayqil, S. N.; Jhanjhi, N. Z. A transfer learning approach with a convolutional neural network for the classification of lung carcinoma. In Healthcare; MDPI, June 2022; Vol. 10, No. 6. [Google Scholar]
- Srinivasan, K.; Garg, L.; Alaboudi, A. A.; Jhanjhi, N. Z.; Prabadevi, B.; Deepa, N. Expert System for Stable Power Generation Prediction in Microbial Fuel Cell. Intelligent Automation & Soft Computing 2021, 30(1). [Google Scholar]
- Saeed, S.; Jhanjhi, N. Z.; Abdullah, A.; Naqvi, M. Current Trends and Issues Legacy Application of the Serverless Architecture. International Journal of Computing Network Technology 2018, 6(3). [Google Scholar] [CrossRef]
- Javed, D.; Jhanjhi, N. Z.; Ashfaq, F.; Khan, N. A.; Das, S. R.; Singh, S. Student Performance Analysis to Identify the Students at Risk of Failure. 2024 International Conference on Emerging Trends in Networks and Computer Communications (ETNCC), 2024, July; IEEE; pp. 1–6. [Google Scholar]
- Jhanjhi, N. Z.; Gaur, L.; Khan, N. A. Global Navigation Satellite Systems for Logistics: Cybersecurity Issues and Challenges. Cybersecurity in the Transportation Industry 2024, 49–67. [Google Scholar]
- Convergence of Industry 4.0 and supply chain sustainability; Khan, M. R., Khan, N. R., Jhanjhi, N. Z., Eds.; IGI Global, 2024. [Google Scholar]
- Ashraf, H.; Jhanjhi, N. Z.; Brohi, S. N.; Muzafar, S. A Comprehensive Exploration of DDoS Attacks and Cybersecurity Imperatives in the Digital Age. In Navigating Cyber Threats and Cybersecurity in the Logistics Industry; IGI Global Scientific Publishing, 2024; pp. 236–257. [Google Scholar]
- Qasim, M.; Mahmood, D.; Bibi, A.; Masud, M.; Ahmed, G.; Khan, S.; Hussain, S. J. PCA-based advanced local octa-directional pattern (ALODP-PCA): a texture feature descriptor for image retrieval. Electronics 2022, 11(2), 202. [Google Scholar] [CrossRef]
- Manzoor, M. K.; Latif, R. M. A.; Haq, I.; Jhanjhi, N. Z. An energy-efficient routing protocol via angle-based flooding zone in underwater wireless sensor networks. International Journal of Intelligent Systems and Applications in Engineering 2022, 10(2s), 116–123. [Google Scholar]
- Gill, S. H.; Sheikh, N. A.; Rajpar, S.; Jhanjhi, N. Z.; Ahmad, M.; Razzaq, M. A.; Jaafar, F. Extended Forgery Detection Framework for COVID-19 Medical Data Using Convolutional Neural Network. Computers, Materials & Continua 2021, 68(3). [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).