Background: The three Synuclein family members (α-, β-, and γ-synuclein) are presynaptic proteins that regulate synaptic vesicle trafficking and thereby influence neurotransmitter release. Synucleins belong to a class of intrinsically disordered proteins and are prone to aggregation into pathological deposits, which may impair their physiological synaptic functions. Knockout (KO) mouse lines, commonly used to model synuclein depletion in the nervous system, reveal a range of phenotypes with different motor and behavioral deficits. However, given the high sequence homology and functional interplay among the three synucleins, the specific contribution of each family member to these phenotypes remains poorly understood. Objective: In this study, we conducted a comparative phenotypic analysis of γ-synuclein KO, α- and β-synuclein KO, and αβγ-synuclein KO mice. Methods: Mice were subjected to a battery of behavioral tests assessing motor activity and coordination, anxiety-like behavior, and spatial learning and memory. Synaptic vesicle proteins were analyzed in brain tissues using Western blotting. Results: We observed that knocking out γ-synuclein but not α- and β-synucleins reduces mouse lifespan and leads to sustained reduction in muscle strength implicating that γ-synuclein is essential for neuromuscular function. Another consequence of γ-synuclein deficiency is altered anxiety-like behavior manifested as a diminished aversive response, while exploratory behavior and memory remain intact. The triple KO mice mirror γ-synuclein KO mice in some behavioral changes, including shortened lifespan, reduced muscle strength, and decreased anxiety-like behavior. However, the triple KO mice additionally exhibit hyperactivity, which is not present in the other groups. No changes in synaptic vesicle marker levels were detected, indicating that the observed motor and behavioral abnormalities are not attributable to impaired synaptic connectivity. Conclusions: Taken together, these findings demonstrate nonredundant functions of individual synuclein family members and highlight a distinct role of γ-synuclein in regulating motor performance and behavioral responses.