Submitted:
03 December 2025
Posted:
04 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Etiology of Bacterial Bovine Respiratory Disease
2.1. Pasteurella multocida
2.2. Mannheimia haemolytica
2.3. Histophilus somni
2.4. Mycoplasma bovis
2.4.1. Secondary Bacterial Pathogens
2.4.2. Viral Coinfections and Predisposition
3. Pathogenesis and Immunology
3.1. Mechanisms of Infection
3.2. Host Immune Responses
4. Risk Factors and Epidemiology
4.1. Environmental Factors and Management Practices
4.2. Geographical Distribution and Prevalence
- Pasteurella multocida: This pathogen is a prevalent commensal and opportunistic pathogen worldwide, possessing a broad host range [70]. Eleven European studies have specifically investigated P. multocida isolates in cattle, with German surveillance from 2014 to 2018 consistently reporting its isolation from respiratory disease cases. In Asia, four studies have focused on P. multocida, and eight studies have been conducted in North America [71].
- Mannheimia haemolytica: Recognized as a primary etiological agent of BRD globally [72,74], M. haemolytica is the predominant bacterial pathogen isolated from BRD cases worldwide [72]. Fatal M. haemolytica infections have been documented in the Netherlands [75], and its serovars associated with respiratory disease have been characterized in Great Britain [76]. Surveillance data from Germany also includes M. haemolytica isolates from respiratory disease [71]. Studies from North America highlight its significant role in BRD morbidity and mortality [71]. In Africa, M. haemolytica has been identified as a principal cause of pneumonic pasteurellosis in small ruminants in Ethiopia [77].
- Mycoplasma bovis: This pathogen is widespread in cattle industries across the globe [82]. It has spread to many countries and is endemic in Europe, having been first isolated in the USA in 1961 and in Denmark in 1981 [83]. It is known to be prevalent in countries such as France, Finland, the UK, and the Netherlands [84], and is the most frequently identified Mycoplasma species associated with respiratory disease in cattle in England and Wales [85]. Globally, five European studies, one Asian study, and two North American studies have focused on M. bovis isolates [71]. Its introduction has also been recorded in Oceania, specifically New Zealand, in 2017 [86].
5. Clinical Manifestations and Diagnosis
5.1. Clinical Signs
5.2. Diagnostic Techniques
5.3. Molecular Diagnostics
5.4. Serological Assays
5.5. Bacteriological Culture and Antimicrobial Susceptibility Testing
5.6. Differential Diagnosis
6. Treatment and Management Strategies
6.1. Antimicrobial Therapy
6.2. Supportive Care
6.3. Prevention and Control Measures
7. Impacts of Bacterial Bovine Respiratory Disease
7.1. Economic Impact
7.2. Animal Welfare Implications
7.3. Public Health Concerns (Antimicrobial Resistance)
8. Future Directions and Research Gaps
8.1. Novel Diagnostic Tools
8.2. Vaccine Development
8.3. Alternative Therapies
8.4. Genomic and Proteomic Approaches
9. Conclusions
Future Perspectives and Take-Home Massages
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamel, M.; Davidson, J.L.; Verma, M.S. Strategies for Bovine Respiratory Disease (BRD) Diagnosis and Prognosis: A Comprehensive Overview. Animals 2024, 14, 627. [Google Scholar] [CrossRef] [PubMed]
- Amat, S. Bovine Respiratory Disease in Feedlot Cattle: Antimicrobial Resistance in Bovine Respiratory Bacterial Pathogens and Alternative Antimicrobial Approaches. In IntechOpen eBooks. IntechOpen. 2019. [CrossRef]
- Alkheraije, K.A. Plant-based therapeutics against bovine respiratory disease complex (BRDC): emerging alternatives in livestock health management. Pak Vet J 2025, 45, 935–946. [Google Scholar] [CrossRef]
- Kaoud, H.A. Bacterial Cattle Diseases. In IntechOpen eBooks 2019. IntechOpen. [CrossRef]
- Behura, S.K.; Tizioto, P.C.; Kim, J.; Grupioni, N.V.; Seabury, C.M.; Schnabel, R.D.; Gershwin, L.J.; Eenennaam, A.L.V.; Toaff-Rosenstein, R.L.; Neibergs, H.L.; Regitano, L.C. de A.; Taylor, J.F. Tissue Tropism in Host Transcriptional Response to Members of the Bovine Respiratory Disease Complex. Sci Rep 2017, 7. [Google Scholar] [CrossRef]
- Gaudino, M.; Nagamine, B.; Ducatez, M.; Meyer, G. Understanding the mechanisms of viral and bacterial coinfections in bovine respiratory disease: a comprehensive literature review of experimental evidence. Vet Res 2022, 53. [Google Scholar] [CrossRef]
- Sorin-Dupont, B.; Poyard, A.; Assié, S.; Picault, S.; Ezanno, P. Individual or collective treatments: how to target antimicrobial use to limit the spread of respiratory pathogens among beef cattle? arXiv (Cornell University), 2024. [Google Scholar] [CrossRef]
- Lapczak, J.C. de O.; Rossi, P.S.; Thomaz, G.R.; Garbossa, G.; Neumann, M.; Bertagnon, H.G. Therapeutic efficacy of marbofloxacin and ceftiofur in feedlot steers with bovine respiratory disease complex. Acta Vet Bras 2022, 16, 371. [Google Scholar] [CrossRef]
- Lion, A.; Secula, A.; Rançon, C.; Boulesteix, O.; Pinard, A.; Deslis, A.; Hägglund, S.; Salem, E.; Cassard, H.; Näslund, K.; Gaudino, M.; Moreno, A.; Brocchi, E.; Delverdier, M.; Zohari, S.; Baranowski, É.; Valarcher, J.-F.; Ducatez, M.; Meyer, G. Enhanced Pathogenesis Caused by Influenza D Virus and Mycoplasma bovis Coinfection in Calves: a Disease Severity Linked with Overexpression of IFN-γ as a Key Player of the Enhanced Innate Immune Response in Lungs. Microbiol Spectr 2021, 9. [Google Scholar] [CrossRef]
- Santos-Rivera, M.; Woolums, A.R.; Thoresen, M.; Blair, E.; Jefferson, V.A.; Meyer, F.; Vance, C.K. Profiling Mannheimia haemolytica infection in dairy calves using near infrared spectroscopy (NIRS) and multivariate analysis (MVA). Sci Rep 2021, 11. [Google Scholar] [CrossRef]
- Kurčubić, V.; Đoković, R.; Ilić, Z.; Petrović, M. Etiopathogenesis and economic significance of bovine respiratory disease complex (BRDC). Acta Agric Serb 2018, 23, 85. [Google Scholar] [CrossRef]
- Lee, H.-H.; Thongrueang, N.; Liu, S.-S.; Hsu, H.-Y.; Tsai, Y. Prevalence of respiratory bacterial pathogens and associated management factors in dairy calves in Taiwan. J Vet Med Sci 2022, 84, 946. [Google Scholar] [CrossRef] [PubMed]
- Amat, S.; Magossi, G.; Rakibuzzaman, A.; Holman, D.B.; Schmidt, K.N.; Kosel, L.; Ramamoorthy, S. Screening and selection of essential oils for an intranasal spray against bovine respiratory pathogens based on antimicrobial, antiviral, immunomodulatory, and antibiofilm activities. Front Vet Sci 2024, 11. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, A.; Yadav, A.; Mehra, U.S.; Yadav, R.; Kumar, P. Clinico-Therapeutic Studies in Bovine Respiratory Disease Complex in Buffaloes. Int J Curr Microbiol Appl 2018, 7, 2042. [Google Scholar] [CrossRef]
- Rattanapanadda, P.; Ramsay, D.; Butters, A.; Booker, C.W.; Hannon, S.J.; Hendrick, S.; Donkersgoed, J.V.; Warr, B.N.; Gow, S.; Morley, P.S. The prevalence and antimicrobial resistance of respiratory pathogens isolated from feedlot cattle in Canada. Front Microbiol 2025, 16. [Google Scholar] [CrossRef]
- Rosenbusch, C.T.; Merchant, I.A. A study of the hemorrhagic septicemia Pasteurellae. J Bacteriol 1939, 37, 69–89. [Google Scholar] [CrossRef]
- Harper, M.; Boyce, J.D.; Adler, B. Pasteurella multocida pathogenesis: 125 years after Pasteur. FEMS Microbiol Lett 2006, 265, 1–10. [Google Scholar] [CrossRef]
- Dowling, A.; Hodgson, J.C.; Schock, A.; Donachie, W.; Eckersall, P.D.; Mckendrick, I.J. Experimental induction of pneumonic pasteurellosis in calves by intratracheal infection with Pasteurella multocida biotype A:3. Res Vet Sci 2002, 73, 37–44. [Google Scholar] [CrossRef]
- Dabo, S.M.; Taylor, J.D.; Confer, A.W. Pasteurella multocida and bovine respiratory disease. Anim Heal Res Rev 2007, 8, 129–150. [Google Scholar] [CrossRef]
- Praveena, P.E. Periasamy S., Kumar A.A., Singh N. Pathology of experimental infection by Pasteurella multocida serotype A: 1 in buffalo calves. Vet. Pathol. 2014, 51, 1109–1112. [Google Scholar] [CrossRef] [PubMed]
- Mostaan, S.; Ghasemzadeh, A.; Sardari, S.; Shokrgozar, M.A.; Nikbakht Brujeni, G.; Abolhassani, M.; Ehsani, P.; Asadi Karam, M.R. Pasteurella multocida vaccine candidates: a systematic review. Avicenna J Med Biotechnol 2020, 12, 140–147. [Google Scholar]
- Cuevas, I.; Carbonero, A.; Cano, D.; García-Bocanegra, I.; Amaro, M. Á.; Borge, C. Antimicrobial resistance of Pasteurella multocida type B isolates associated with acute septicemia in pigs and cattle in Spain. BMC Vet Res 2020, 16, 222. [Google Scholar] [CrossRef] [PubMed]
- Angen, Ø.; Mutters, R.; Caugant, D.A.; Olsen, J.E.; Bisgaard, M. Taxonomic relationships of the [Pasteurella] haemolytica complex as evaluated by DNA-DNA hybridizations and 16S rRNA sequencing with proposal of Mannheimia haemolytica gen. nov., comb. nov., Mannheimia granulomatis comb. nov., Mannheimia glucosida sp. nov., Mannheimia ruminalis sp. nov. and Mannheimia varigena sp. nov. Int J Syst Bacteriol 1999, 49, 67–86. [Google Scholar] [CrossRef]
- Rice, J.A.; Carrasco-Medina, L.; Hodgins, D.C.; Shewen, P.E. Mannheimia haemolytica and bovine respiratory disease. Anim Heal Res Rev 2007, 8, 117–128. [Google Scholar] [CrossRef]
- Confer, A.W.; Ayalew, S. Mannheimia haemolytica in bovine respiratory disease: immunogens, potential immunogens, and vaccines. Anim Heal Res Rev 2018, 19, 79–99. [Google Scholar] [CrossRef]
- Singh, K.; Ritchey, J.W.; Confer, A.W. Mannheimia haemolytica: bacterial-host interactions in bovine Pneumonia. Vet Pathol 2011, 48, 338–348. [Google Scholar] [CrossRef]
- Tucci, P.; Estevez, V.; Becco, L.; Cabrera-Cabrera, F.; Grotiuz, G.; Reolon, E.; Marín, M. Identification of Leukotoxin and other vaccine candidate proteins in a Mannheimia haemolytica commercial antigen. Heliyon 2016, 2, e00158. [Google Scholar] [CrossRef]
- Capik, S.F.; Moberly, H.K.; Larson, R.L. Systematic review of vaccine efficacy against Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni in North American cattle. Bov Pract 2021, 55, 125–133. [Google Scholar] [CrossRef]
- Amat, S.; Alexander, T.W.; Holman, D.B.; Schwinghamer, T.; Timsit, E. Intranasal bacterial therapeutics reduce colonization by the respiratory pathogen Mannheimia haemolytica in dairy calves. Systems 2020, 5, e00629–e719. [Google Scholar] [CrossRef]
- Headley, S.A.; Pereira, A.H.T.; Balbo, L.C.; Di Santia, G.W.; Bracarense, A.P.F.R.L.; Filho, L.F.C.C.; Schade, J.; Okano, W.; Pereira, P.F.V.; Morotti, F.; Preto-Giordano, L.G.; Marcasso, R.A.; Alfieri, A.F.; Lisbôa, J.A.N.; Alfieri, A.A. Histophilus somni-associated syndromes in sheep from Southern Brazil. Brazil J Microbiol 2018, 49, 591–600. [Google Scholar] [CrossRef]
- Corbeil, L.B.; Widders, P.R.; Gogolewski, R.; Arthur, J.; Inzana, T.J.; Ward, A.C. Haemophilus somnus: bovine reproductive and respiratory disease. Can Vet J 1986, 27, 90. [Google Scholar] [PubMed]
- Murray, G.M.; More, S.J.; Sammin, D.; Casey, M.J.; McElroy, M.C.; O’Neill, R.G.; Byrne, W.J.; Earley, B.; Clegg, T.A.; Ball, H.; Bell, C.J.; Cassidy, J.P. Pathogens, patterns of pneumonia, and epidemiologic risk factors associated with respiratory disease in recently weaned cattle in Ireland. J Vet Diagn Invest 2017, 29, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Givens, M.D. Review: risks of disease transmission through semen in cattle. Animal 2018, 12, s165–s171. [Google Scholar] [CrossRef]
- Corbeil, L.B. Histophilus somni host–parasite relationships. Anim Heal Res Rev 2007, 8, 151–160. [Google Scholar] [CrossRef]
- Jánosi, K.; Stipkovits, L.; Glávits, R.; Molnár, T.; Makrai, L.; Gyuranecz, M.; Varga, J.; Fodor, L. Aerosol infection of calves with Histophilus somni. Acta Vet Hung 2009, 57, 347–356. [Google Scholar] [CrossRef]
- Guzmán-Brambila, C.; Rojas-Mayorquín, A.E.; Flores-Samaniego, B.; Ortuño-Sahagún, D. Two outer membrane lipoproteins from Histophilus somni are immunogenic in rabbits and sheep and induce protection against bacterial challenge in mice. Clin Vaccine Immunol 2012, 19, 1826. [Google Scholar] [CrossRef]
- Hale, H.H.; Hemlboldt, C.F.; Plastridge, W.N.; Stula, E.F. Bovine mastitis caused by a Mycoplasma species. Cornell Vet 1962, 52, 582–591. [Google Scholar]
- Nicholas, R.A.J.; Ayling, R.D. Mycoplasma bovis: disease, diagnosis, and control. Res Vet Sci 2003, 74, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Lysnyansky, I.; Ayling, R.D. Mycoplasma bovis: mechanisms of resistance and trends in antimicrobial susceptibility. Front Microbiol 2016, 7, 595. [Google Scholar] [CrossRef] [PubMed]
- Gourlay, R.N.; Thomas, L.H.; Wyld, S.G. Increased severity of calf pneumonia associated with the appearance of Mycoplasma bovis in a rearing herd. Vet Rec 1989, 124, 420–422. [Google Scholar] [CrossRef] [PubMed]
- Dudek, K.; Nicholas, R.A.J.; Szacawa, E.; Bednarek, D. Mycoplasma bovis infections—occurrence, diagnosis and control. Pathogens 2020, 9, 1–21. [Google Scholar] [CrossRef]
- McAuliffe, L.; Ellis, R.J.; Miles, K.; Ayling, R.D.; Nicholas, R.A.J. Biofilm formation by mycoplasma species and its role in environmental persistence and survival. Microbiology 2006, 152, 913–922. [Google Scholar] [CrossRef]
- Dudek, K.; Szacawa, E.; Nicholas, R.A.J. Recent developments in vaccines for bovine mycoplasmoses caused by Mycoplasma bovis and Mycoplasma mycoides subsp mycoides. Vaccines 2021, 9, 549. [Google Scholar] [CrossRef]
- Cai, H.Y.; McDowall, R.; Parker, L.; Kaufman, E.I.; Caswell, J.L. Changes in antimicrobial susceptibility profiles of Mycoplasma bovis over time. Can J Vet Res 2019, 83, 34. [Google Scholar]
- Fanelli, A.; Cirilli, M.; Lucente, M.S.; Zarea, A.A.K.; Buonavoglia, D.; Tempesta, M.; Greco, G. Fatal Calf Pneumonia Outbreaks in Italian Dairy Herds Involving Mycoplasma bovis and Other Agents of BRD Complex. Front Vet Sci 2021, 8. [Google Scholar] [CrossRef]
- Enevoldsen, C.; Garcia, E.; Klaas, I.C. An adaptive approach to a quantitative diagnosis of a complex dairy herd health problem. Abstract fra 8th ECBHM symposium, Bern, Schweiz, 2013.
- Gelgie, A.E.; Desai, S.; Gelalcha, B.D.; Dego, O.K. Mycoplasma bovis mastitis in dairy cattle. Front Vet Sci 2024, 11. [Google Scholar] [CrossRef] [PubMed]
- Caswell, J.L.; Czuprynski, C.J. Mannheimia and Bibersteinia. In Pathogenesis of Bacterial Infections in Animals (eds J.F. Prescott, A.N. Rycroft, J.D. Boyce, J.I. MacInnes, F. Van Immerseel and J.A. Vázquez-Boland). 2022. [CrossRef]
- Wen, X.; Cheng, J.; Liu, M. Virulence factors and therapeutic methods of Trueperella pyogenes: A review. Virulence 2025, 16. [Google Scholar] [CrossRef] [PubMed]
- Dorella, F.A.; Pacheco, L.G.; Oliveira, S.C.; Miyoshi, A.; Azevedo, V. Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Vet Res 2006, 37, 201–18. [Google Scholar] [CrossRef]
- Watts, J.L.; Sweeney, M.T. Antimicrobial resistance in bovine respiratory disease pathogens: Measures, trends, and impact on efficacy. Vet Clin N Am 2010, 26, 79–88. [Google Scholar] [CrossRef]
- López, A. "Respiratory System." In Pathologic Basis of Veterinary Disease, 7th ed. 2020.
- Timsit, E.; Workentine, M.; Schryvers, A.B.; Holman, D.B.; van der Meer, F.; Alexander, T.W. Evolution of the nasopharyngeal microbiota of beef cattle from weaning to 40 days after arrival at a feedlot. Vet Microbiol 2016, 187, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Mašić, A.; Sobecki, B.; Mahan, S.M.; Brice, C.; Mattern, S.; Peterson, D.; Barret, P.; Daugherty, C.; Meinert, T.R.; Correas, I.; Moulin, V. Efficacy of a combination modified-live IBR-BVD-PI3-BRSV vaccine + Mannheimia haemolytica toxoid against challenge with virulent BVDV-1b and BVDV-2 viruses in young calves 60 days of age. Bov Pract 2021, 1. [Google Scholar] [CrossRef]
- Padalino, B.; Cirone, F.; Zappaterra, M.; Tullio, D.; Ficco, G.; Giustino, A.; Ndiana, L.A.; Pratelli, A. Factors Affecting the Development of Bovine Respiratory Disease: A Cross-Sectional Study in Beef Steers Shipped from France to Italy. Front Vet Sci 2021, 8. [Google Scholar] [CrossRef]
- Smith, R.A. Review of Bovine Respiratory Disease. American Association of Bovine Practitioners Conference Proceedings 1983, 102. [Google Scholar] [CrossRef]
- Hasankhani, A.; Bahrami, A.; Sheybani, N.; Fatehi, F.; Abadeh, R.; Farahani, H.G.M.; Behzadi, M.R.B.; Javanmard, G.; Isapour, S.; Khadem, H.; Barkema, H.W. Integrated Network Analysis to Identify Key Modules and Potential Hub Genes Involved in Bovine Respiratory Disease: A Systems Biology Approach. Front Genet 2021, 12. [Google Scholar] [CrossRef]
- Basqueira, N.S.; Martin, C.C.; Costa, J.F. dos R.; Okuda, L.H.; Pituco, M.E.; Batista, C.F.; Libera, A.M.M.P.D.; Gomes, V. Bovine Respiratory Disease (BRD) Complex as a Signal for Bovine Viral Diarrhea Virus (BVDV) Presence in the Herd. Acta Sci Vet 2017, 45, 6. [Google Scholar] [CrossRef]
- Hodgson, P.D.; Aich, P.; Stookey, J.; Popowych, Y.; Potter, A.; Babiuk, L.; Griebel, J.P. Stress significantly increases mortality following a secondary bacterial respiratory infection. Vet Res 2012, 43, 21. [Google Scholar] [CrossRef] [PubMed]
- Amat, S.; Holman, D.B.; Timsit, E.; Schwinghamer, T.; Alexander, T.W. Evaluation of the Nasopharyngeal Microbiota in Beef Cattle Transported to a Feedlot, With a Focus on Lactic Acid-Producing Bacteria. Front Microbiol 2019b, 10. [CrossRef] [PubMed]
- Marı́n, C. A Bird’s-Eye View of Veterinary Medicine. InTech eBooks 2012. [CrossRef]
- Ghahramani, N.; Hashemi, A.; Panahi, B. Weighted gene co-expression network analysis identifies functional modules related to bovine respiratory disease. PLoS ONE 2025, 20. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, S.; Xiang, Z.; Shirani, I.; Chen, Y.; Guo, A. Effects of vaccination and interventions on nasal microbiome and BRD-associated pathogens in calves. Front Microbiol 2024, 15. [Google Scholar] [CrossRef]
- Marutsov, P.; Boneva-Marutsova, B.; Tsankov, P. An Evaluation of the Field Efficacy of Tildipirosin for Control of Bovine Respiratory Disease in Feedlot Calves in Bulgaria. Bulg J Anim Husb 2024, 61, 63. [Google Scholar] [CrossRef]
- Corona-Torres, R. Structure and function of the neuraminidase produced by Mannheimia haemolytica. In University of Birmingham Institutional Research Archive. 2017. University of Birmingham.
- Snowder, G.D.; Vleck, L.D.V.; Cundiff, L.V.; Bennett, G.L. Bovine respiratory disease in feedlot cattle: Environmental, genetic, and economic factors. J Anim Sci 2006, 84, 1999. [Google Scholar] [CrossRef]
- Workman, A.M.; Kuehn, L.A.; McDaneld, T.G.; Clawson, M.L.; Loy, J.D. Longitudinal study of humoral immunity to bovine coronavirus, virus shedding, and treatment for bovine respiratory disease in pre-weaned beef calves. BMC Vet Res 2019, 15. [Google Scholar] [CrossRef]
- El-Seedy, F.R.; Hassan, H.M.; Nabih, A.; Salem, S.E.; Khalifa, E.; Menshawy, A.M.S.; Abed, A.H. Respiratory Affections in Calves in Upper and Middle Egypt: Bacteriologic, Immunologic and Epidemiologic Studies. Adv Anim Vet Sci 2020, 8. [Google Scholar] [CrossRef]
- Nicola, I.; Cerutti, F.; Grego, E.; Bertone, I.; Gianella, P.; D’Angelo, A.; Peletto, S.; Bellino, C. Characterization of the upper and lower respiratory tract microbiota in Piedmontese calves. Microbiome 2017, 5. [Google Scholar] [CrossRef] [PubMed]
- Su, A.; Tong, J.; Fu, Y.; Müller, S.; Weldearegay, Y.B.; Becher, P.; Valentin-Weigand, P.; Meens, J.; Herrler, G. Infection of bovine well-differentiated airway epithelial cells by Pasteurella multocida: actions and counteractions in the bacteria–host interactions. Vet Res 2020, 51. [Google Scholar] [CrossRef]
- EFSA AHAW Panel (EFSA Panel on Animal Health and Welfare), Nielsen, S.S.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortazar Schmidt, C.; Herskin, M.; Michel, V.; Miranda Chueca, M.A.; Padalino, B, Pasquali, P.; Roberts, H.C.; Spoolder, H.; Stahl, K.; Velarde, A.; Viltrop, A.; Winckler, C.; Dewulf, J.; Guardabassi, L.; Hilbert, F.; Mader, R.; Baldinelli, F.; Alvarez, J. Scientific Opinion on the assessment of animal diseases caused by bacteria resistant to antimicrobials: cattle. EFSA Journal 2021, 19,6955. [CrossRef]
- Clawson, M.L.; Schuller, G.; Dickey, A.M.; Bono, J.L.; Murray, R.W.; Sweeney, M.T.; Apley, M.D.; DeDonder, K.D.; Capik, S.F.; Larson, R.L.; Lubbers, B.V.; White, B.J.; Blom, J.; Chitko-McKown, C.G.; Brichta-Harhay, D.M.; Smith, T.P.L. Differences between predicted outer membrane proteins of genotype 1 and 2 Mannheimia haemolytica. BMC Microbiol 2020, 20. [Google Scholar] [CrossRef]
- Pitran, M.; Duţulescu, A.; Jalbă, M.; Codreanu, M.-D. Mannheimia haemolytica and respiratory complex diseases in calves. Practica Veterinara Ro 2023, 4, 58. [Google Scholar] [CrossRef]
- Wang, C.; Bai, X.; Wang, J.; Ye, D.; Dou, L.; Yang, Z. Exploring the diagnostic landscape of Mannheimia haemolytica: technologies, applications, and perspectives. Front Microbiol 2025, 16. [Google Scholar] [CrossRef]
- Biesheuvel, M.M.; Schaik, G. van; Meertens, N.M.; Peperkamp, N.H.M.T.; Engelen, E. van; Garderen, E. van. Emergence of fatal Mannheimia haemolytica infections in cattle in the Netherlands. TVJ 2020, 268, 105576. [Google Scholar] [CrossRef]
- Mason, C.; Errington, J.; Foster, G.; Thacker, J.; Grace, O.D.; Baxter-Smith, K. Mannheimia haemolytica serovars associated with respiratory disease in cattle in Great Britain. BMC Vet Res 2022, 18, 5. [Google Scholar] [CrossRef]
- Legesse, A.; Abayneh, T.; Mamo, G.; Gelaye, E.; Tesfaw, L.; Yami, M.; Belay, A. Molecular characterization of Mannheimia haemolytica isolates associated with pneumonic cases of sheep in selected areas of Central Ethiopia. BMC Microbiol 2018, 18. [Google Scholar] [CrossRef]
- Romero, F.A.; Guemes, F.S.; Trigo-Tavera, F.J. Histofilosis en bovinos: microbiología, epidemiología y patología. Veterinaria México OA, (2024). 11. [CrossRef]
- Ueno, Y.; Suzuki, K.; Takamura, Y.; Hoshinoo, K.; Takamatsu, D.; Katsuda, K. Antimicrobial resistance and associated genetic background of Histophilus somni isolated from clinically affected and healthy cattle. Front Vet Sci 2022, 9. [Google Scholar] [CrossRef]
- Andrés-Lasheras, S.; Jelinski, M.; Zaheer, R.; McAllister, T.A. Bovine Respiratory Disease: Conventional to Culture-Independent Approaches to Studying Antimicrobial Resistance in North America. Antibiotics 2022, 11, 487. [Google Scholar] [CrossRef]
- Andrés-Lasheras, S.; Zaheer, R.; Jelinski, M.; McAllister, T.A. Role of biofilms in antimicrobial resistance of the bacterial bovine respiratory disease complex. Front Vet Sci 2024, 11. [Google Scholar] [CrossRef] [PubMed]
- Bokma, J.; Vereecke, N.; Bleecker, K.D.; Callens, J.; Ribbens, S.; Nauwynck, H.; Haesebrouck, F.; Theuns, S.; Boyen, F.; Pardon, B. Phylogenomic analysis of Mycoplasma bovis from Belgian veal, dairy and beef herds. Vet Res 2020, 51. [Google Scholar] [CrossRef]
- Petersen, M.B. Mycoplasma bovis in dairy cattle: Clinical epidemiology and antibody measurements for decision making. PhD Thesis, University of Copenhagen, 2018.
- Andersson, A.-M.; Aspán, A.; Wisselink, H.J.; Smid, B.; Ridley, A.J.; Pelkonen, S.; Autio, T.; Lauritsen, K.T.; Kensø, J.; Gaurivaud, P.; Tardy, F. A European inter-laboratory trial to evaluate the performance of three serological methods for diagnosis of Mycoplasma bovis infection in cattle using latent class analysis. BMC Vet Res, 2019; 15. [Google Scholar] [CrossRef]
- Deeney, A.S.; Collins, R.; Ridley, A.J. Identification of Mycoplasma species and related organisms from ruminants in England and Wales during 2005–2019. BMC Vet Res 2021, 17. [Google Scholar] [CrossRef]
- Gille, L.; Evrard, J.; Callens, J.; Supré, K.; Grégoire, F.; Boyen, F.; Haesebrouck, F.; Deprez, P.; Pardon, B. The presence of Mycoplasma bovis in colostrum. Vet Res 2020, 51. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; Capik, S.F.; Kegley, E.B.; Richeson, J.T.; Powell, J.G.; Zhao, J. Bovine respiratory microbiota of feedlot cattle and its association with disease. Vet Res 2022, 53, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.; Zhang, J.; Zhao, B.; Li, X.; Zhang, X.; Hu, R.; Elken, E.M.; Kong, L.; Gao, Y. Genomic and transcriptomic analysis of bovine Pasteurella multocida serogroup A strain reveals insights into virulence attenuation. Front Vet Sci 2021, 8. [Google Scholar] [CrossRef]
- Klompmaker, A.F.; Brydensholt, M.; Michelsen, A.M.; Denwood, M.; Kirkeby, C.; Larsen, L.E.; Goecke, N.B.; Otten, N.D.; Nielsen, L.R. Estimating Clinically Relevant Cut-Off Values for a High-Throughput Quantitative Real-Time PCR Detecting Bacterial Respiratory Pathogens in Cattle. Front Vet Sci 2021, 8. [Google Scholar] [CrossRef]
- Fulton, R.W.; Confer, A.W. Laboratory test descriptions for bovine respiratory disease diagnosis and their strengths and weaknesses: gold standards for diagnosis, do they exist? PubMed, 2012. [Google Scholar]
- Esnault, G.; Earley, B.; Cormican, P.; Waters, S.M.; Lemon, K.; Barry, T.; Reddington, K.; McCabe, M.S. Optimisation of rapid untargeted nanopore DNA virus metagenomics using cell cultures and calves experimentally infected with bovine herpes virus-1. Res Sq 2021. [CrossRef]
- Mee, J.F.; Barrett, D.; Boloña, P.S.; Conneely, M.; Earley, B.; Fagan, S.; Keane, O.M.; Lane, E. Ruminant health research – progress to date and future prospects, with an emphasis on Irish research. Ir J Agric Food Res 2022. [CrossRef]
- Freeman, C.N.; Herman, E.K.; Younes, J.A.; Ramsay, D.; Erikson, N.; Stothard, P.; Links, M.G.; Otto, S.J.G.; Waldner, C. Evaluating the potential of third generation metagenomic sequencing for the detection of BRD pathogens and genetic determinants of antimicrobial resistance in chronically ill feedlot cattle. BMC Vet Res 2022, 18. [Google Scholar] [CrossRef] [PubMed]
- Saminathan, M.; Rana, R.; Ramakrishnan, M.A.; Karthik, K.; Malik, Y.S.; Dhama, K. revalence, diagnosis, management and control of important diseases of ruminants with special reference to indian scenario. J Exp Biol Agric Sci 2016, 4, 338. [Google Scholar] [CrossRef]
- Neibergs, H.L.; Seabury, C.M.; Wójtowicz, A.; Wang, Z.; Scraggs, E.; Kiser, J.N.; Neupane, M.; Womack, J.E.; Eenennaam, A.L.V.; Hagevoort, G.R.; Lehenbauer, T.W.; Aly, S.S.; Davis, J.H.; Taylor, J.F. Susceptibility loci revealed for bovine respiratory disease complex in pre-weaned holstein calves. BMC Genomics 2014, 15, 1164. [Google Scholar] [CrossRef]
- Kishimoto, M.; Tsuchiaka, S.; Rahpaya, S.S.; Hasebe, A.; Otsu, K.; Sugimura, S.; Kobayashi, S.; Komatsu, N.; Nagai, M.; Omatsu, T.; Naoi, Y.; Sano, K.; Okazaki-Terashima, S.; Oba, M.; Katayama, Y.; Sato, R.; Asai, T.; Mizutani, T. Development of a one-run real-time PCR detection system for pathogens associated with bovine respiratory disease complex. J Vet Med Sci 2017, 79, 517. [Google Scholar] [CrossRef]
- Scott, M.A.; Woolums, A.R.; Swiderski, C.E.; Perkins, A.; Nanduri, B. Genes and regulatory mechanisms associated with experimentally-induced bovine respiratory disease identified using supervised machine learning methodology. Sci Rep 2021, 11. [Google Scholar] [CrossRef]
- Vlasova, A.N.; Saif, L.J. Bovine Immunology: Implications for Dairy Cattle. Front Immunol 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Summaries invited. Adv Anim Biosci 2018, 9, 235–277. [CrossRef]
- Lhermie, G.; Toutain, P.; Garch, F.E.; Bousquet-mélou, A.; Assié, S. Implementing Precision Antimicrobial Therapy for the Treatment of Bovine Respiratory Disease: Current Limitations and Perspectives. Front Vet Sci 2017, 4. [Google Scholar] [CrossRef]
- Stokstad, M.; Klem, T.B.; Myrmel, M.; Oma, V.S.; Toftaker, I.; Østerås, O.; Nødtvedt, A. Using Biosecurity Measures to Combat Respiratory Disease in Cattle: The Norwegian Control Program for Bovine Respiratory Syncytial Virus and Bovine Coronavirus. Front Vet Sci 2020, 7. [Google Scholar] [CrossRef]
- Andrés-Lasheras, S.; Ha, R.; Zaheer, R.; Lee, C.; Booker, C.W.; Dorin, C.; Donkersgoed, J.V.; Deardon, R.; Gow, S.; Hannon, S.J.; Hendrick, S.; Anholt, M.; McAllister, T.A. Prevalence and Risk Factors Associated With Antimicrobial Resistance in Bacteria Related to Bovine Respiratory Disease — A Broad Cross-Sectional Study of Beef Cattle at Entry Into Canadian Feedlots. Front Vet Sci 2021, 8. [Google Scholar] [CrossRef]
- Vasseur, M.V.; Lacroix, M.Z.; Toutain, P.; Bousquet-mélou, A.; Ferran, A. Infection-stage adjusted dose of beta-lactams for parsimonious and efficient antibiotic treatments: A Pasteurella multocida experimental pneumonia in mice. PLoS ONE 2017, 12. [Google Scholar] [CrossRef]
- Baggott, D.G.; Casartelli, A.; Fraisse, F.; Manavella, C.; Marteau, R.; Rehbein, S.; Wiedemann, M.; Yoon, S. Demonstration of the metaphylactic use of gamithromycin against bacterial pathogens associated with bovine respiratory disease in a multicentre farm trial. Vet Rec 2011, 168, 241. [Google Scholar] [CrossRef]
- Magossi, G.; Schmidt, K.N.; Winders, T.; Carlson, Z.E.; Holman, D.B.; Underdahl, S.R.; Swanson, K.C.; Amat, S. A Single Intranasal Dose of Essential Oil Spray Confers Modulation of the Nasopharyngeal Microbiota and Short-term Inhibition of Mannheimia in Feedlot Cattle: A Pilot Study. Sci Rep 2024, 14, 823. [Google Scholar] [CrossRef]
- Nóbrega, D.B.; Andrés-Lasheras, S.; Zaheer, R.; McAllister, T.A.; Homerosky, E.R.; Anholt, R.M.; Dorin, C. Prevalence, Risk Factors, and Antimicrobial Resistance Profile of Respiratory Pathogens Isolated from Suckling Beef Calves to Reprocessing at the Feedlot: A Longitudinal Study. Front Vet Sci 2021, 8. [Google Scholar] [CrossRef] [PubMed]
- Merca, C.; Sorin-Dupont, B.; Kristensen, A.R.; Picault, S.; Assié, S.; Ezanno, P. Combining dynamic generalized linear models and mechanistic modelling to optimize treatment strategies against bovine respiratory disease. Vet Res 2025, 56. [Google Scholar] [CrossRef] [PubMed]
- Cummins, J.Μ.; Hutcheson, D.P. Low Dosage of Interferon to Enhance Vaccine Efficiency in Feedlot Calves. In: Proceedings American Association of Bovine Practitioners Conference 1985, 135. [CrossRef]
- Baptista, A.L.; Xavier, A.A.C.; Reis, M.M.; Madeira, R.B.; Cerqueira, H.D.B. de; Gama, R.D.; Headley, S.A.; Saut, J.P.E. The economic impacts of the bovine respiratory disease complex on beef cattle feedlots from Brazil. Semin Ciênc Agrár 2025, 46, 1401. [Google Scholar] [CrossRef]
- Lima, S.; Teixeira, A.G.V.; Higgins, C.H.; Lima, F.S.; Bicalho, R.C. The upper respiratory tract microbiome and its potential role in bovine respiratory disease and otitis media. Sci Rep 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- White, B.J.; Larson, B.L. Impact of bovine respiratory disease in U.S. beef cattle. Anim Health Res Rev 2020, 21, 132. [Google Scholar] [CrossRef]
- Dewell, R.D.; Millman, S.T.; Parsons, R.L.; Sadler, L.J.; Noffsinger, T.; Busby, W.D.; Wang, C.; Dewell, G.A. Clinical trial to assess the impact of acclimation and low-stress cattle handling on bovine respiratory disease and performance during the feedyard finishing phase. Bov Pract 2019, 71. [Google Scholar] [CrossRef]
- Johnson, K.K.; Pendell, D.L. Market Impacts of Reducing the Prevalence of Bovine Respiratory Disease in United States Beef Cattle Feedlots. Front Vet Sci 2017, 4. [Google Scholar] [CrossRef]
- Arslan, H.H. Current Approach to Bovine Respiratory Disease. JDVS 2018, 5. [Google Scholar] [CrossRef]
- Cameron, A.; McAllister, T.A. Antimicrobial usage and resistance in beef production. J Anim Sci Biotech 2016, 7. [Google Scholar] [CrossRef]
- Ibeagha-Awemu, E.M.; Omonijo, F.; Piché, L.C.; Vincent, A.T. Alternatives to antibiotics for sustainable livestock production in the context of the One Health approach: tackling a common foe. Front Vet Sci 2025, 12. [Google Scholar] [CrossRef]
- Lhermie, G.; Chiu, L.J.V.; Kaniyamattam, K.; Tauer, L.W.; Scott, H.M.; Gröhn, Y.T. Antimicrobial Policies in United States Beef Production: Choosing the Right Instruments to Reduce Antimicrobial Use and Resistance Under Structural and Market Constraints. Front Vet Sci 2019, 6. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, J.F.; Magstadt, D.R.; Sidhu, P.K.; Follett, L.; Schuler, A.M.; Krull, A.C.; Cooper, V.L.; Engelken, T.J.; Kleinhenz, M.D.; O’Connor, A.M. Association between antimicrobial drug class for treatment and retreatment of bovine respiratory disease (BRD) and frequency of resistant BRD pathogen isolation from veterinary diagnostic laboratory samples. PLoS ONE 2019, 14. [Google Scholar] [CrossRef]
- Jansen, G.J.; Schouten, G.P.; Wiersma, M. Advancements in analytical methods for studying the human gut microbiome. J Biol Methods 2024, 12. [Google Scholar] [CrossRef] [PubMed]
- Maina, T.; Grego, E.; Boggiatto, P.M.; Sacco, R.E.; Narasimhan, B.; McGill, J.L. Applications of Nanovaccines for Disease Prevention in Cattle. Front Bioeng Biotechnol 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.P.; Fajt, V.R.; Scott, H.M.; Foster, M.; Wickwire, P.; McEwen, S.A. Scoping review to identify potential non-antimicrobial interventions to mitigate antimicrobial resistance in commensal enteric bacteria in North American cattle production systems. Epidemiol Infect 2015, 144, 1. [Google Scholar] [CrossRef]
- Crosby, W.B.; Pinnell, L.J.; Richeson, J.T.; Wolfe, C.; Castle, J.; Loy, J.D.; Gow, S.; Seo, K.S.; Capik, S.F.; Woolums, A.R.; Morley, P.S. Does swab type matter? Comparing methods for Mannheimia haemolytica recovery and upper respiratory microbiome characterization in feedlot cattle. Anim Microbiome 2022, 4. [Google Scholar] [CrossRef]
- Chamorro, M.F.; Palomares, R.A. Bovine respiratory disease vaccination against viral pathogens: modified-live versus inactivated antigen vaccines, intranasal versus parenteral, what is the evidence? Vet Clin North Am Food Anim Pract 2020, 36, 461. [Google Scholar] [CrossRef] [PubMed]
| Pathogen | Taxonomy | Key Virulence Factors | Clinical/Pathological Features | Treatment & Notes |
|---|---|---|---|---|
| Mannheimia haemolytica |
Pasteurellaceae Gram-negative |
Leukotoxin (Lkt), capsule, adhesins, LPS | Acute fibrinous pleuropneumonia, necrotizing inflammation, high mortality in feedlots | Florfenicol, ceftiofur, tulathromycin; leukotoxoid vaccines available but variable efficacy |
| Pasteurella multocida |
Pasteurellaceae Gram-negative |
Capsule (serotype A:3 most common in BRD), LPS, adhesins | Fibrinopurulent bronchopneumonia, hemorrhages, neutrophil infiltration | Amoxicillin, tilmicosin, florfenicol; rising resistance; bacterin vaccines often combined with viral antigens |
| Histophilus somni |
Pasteurellaceae Gram-negative |
Biofilm formation, LOS, Ig-binding proteins | Systemic spread possible (septicemia, myocarditis, encephalitis); fibrinous pleuritis & bronchopneumonia | Florfenicol, broad-spectrum antibiotics; bacterins show limited protection; no serotype classification |
| Mycoplasma bovis |
Mycoplasmataceae lack cell wall |
Surface protein variation, intracellular persistence, biofilm | Chronic pneumonia with caseous necrosis, mastitis, otitis; often complicates mixed infections | Intrinsically resistant to β-lactams; macrolides, tetracyclines; vaccines reduce severity but do not prevent infection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
