Submitted:
03 December 2025
Posted:
04 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. History
History of Human Metapneumovirus
History of Avian Metapneumovirus
3. Viral Genome
Metapneumovirus Viral Genome
Role of Different Proteins in Host Cell Entry And Immune Evasion
4. Host Range and Tropism
Host Range and Tropism of aMPV
Immune Response
Clinical Signs
Transmission
Host Range and Tropism of hMPV: Humans
5. Diagnostics
6. Vaccine Strategies
Vaccine Strategies for hMPV
Vaccine Strategies for aMPV
7. Conclusions
Conclusions and Recommendations
Author Contributions
Funding
Conflicts of Interest
References
- Rima, B.; Collins, P.; Easton, A.; Fouchier, R.; Kurath, G.; Lamb, R.A.; Lee, B.; Maisner, A.; Rota, P.; Wang, L.; et al. ICTV Virus Taxonomy Profile: Pneumoviridae. J. Gen. Virol. 2017, 98, 2912–2913. [Google Scholar] [CrossRef] [PubMed]
- Ditt, V.; Lüsebrink, J.; Tillmann, R.L.; Schildgen, V.; Schildgen, O. Respiratory Infections by HMPV and RSV Are Clinically Indistinguishable but Induce Different Host Response in Aged Individuals. PLOS ONE 2011, 6, e16314. [Google Scholar] [CrossRef] [PubMed]
- M S, HY C, JA E, M B-H, M C, JL K, et al. Epidemiology of Symptomatic Human Metapneumovirus Infection in the CASCADIA Community-Based Cohort - Oregon and Washington, 2022-2024 - PubMed. MMWR Morbidity and mortality weekly report. 04/03/2025;74(11).
- Li, A.; Gong, C.; Wang, L.; Han, Y.; Kang, L.; Hu, G.; Cao, J.; Li, M.; Guan, X.; Luo, M.; et al. Epidemiological and phylogenetic characteristics of human metapneumovirus in Beijing, China, 2014–2024. Signal Transduct. Target. Ther. 2025, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Haas LEM, Thijsen SFT, Elden Lv, Heemstra KA. Human Metapneumovirus in Adults. Viruses. 2013 Jan 8;5(1).
- S U, M T. Human Metapneumovirus StatPearls [Internet]: Treasure Island (FL) : StatPearls Publishing; Updated 2023 Jul 17 [Available from: https://www.ncbi.nlm.nih.gov/books/NBK560910/.
- Buys SB, Du Preez, J.H. A preliminary report on the isolation of a virus causing sinusitis in turkeys in South Africa and attempts to attenuate the virus. (1980);28: 36.
- Cha RM, Khatri M, Sharma JM, Cha RM, Khatri M, Sharma JM. B-Cell Infiltration in the Respiratory Mucosa of Turkeys Exposed to Subtype C Avian Metapneumovirus. Avian Diseases. 2007/09;51(3).
- Sugiyama, M.; Koimaru, H.; Shiba, M.; Ono, E.; Nagata, T.; Ito, T. Drop of Egg Production in Chickens by Experimental Infection with an Avian Metapneumovirus Strain PLE8T1 Derived from Swollen Head Syndrome and the Application to Evaluate Vaccine. J. Veter- Med Sci. 2006, 68, 783–787. [Google Scholar] [CrossRef]
- DP P, AM S, BR G, SM G. Experimental and field evaluation of a live vaccine against avian pneumovirus - PubMed. Avian pathology : journal of the WVPA. 2002 Aug;31(4).
- Zhang, J.; Tian, L.; Dittman, J.; Guo, B.; Kimpston-Burkgren, K.; Kalkwarf, E.; Gadu, E.; Gauger, P.; El-Gazzar, M.; Sato, Y. Isolation and characterization of avian metapneumovirus subtypes A and B associated with the 2024 disease outbreaks among poultry in the USA. J. Clin. Microbiol. 2025, 63, e0033325. [Google Scholar] [CrossRef]
- Jesse, S.T.; Ludlow, M.; Osterhaus, A.D.M.E. Zoonotic Origins of Human Metapneumovirus: A Journey from Birds to Humans. Viruses 2022, 14, 677. [Google Scholar] [CrossRef]
- Basinski, A.J.; Fichet-Calvet, E.; Sjodin, A.R.; Varrelman, T.J.; Remien, C.H.; Layman, N.C.; Bird, B.H.; Wolking, D.J.; Monagin, C.; Ghersi, B.M.; et al. Bridging the gap: Using reservoir ecology and human serosurveys to estimate Lassa virus spillover in West Africa. PLOS Comput. Biol. 2021, 17, e1008811. [Google Scholar] [CrossRef]
- Caserta, L.C.; Frye, E.A.; Butt, S.L.; Laverack, M.; Nooruzzaman, M.; Covaleda, L.M.; Thompson, A.C.; Koscielny, M.P.; Cronk, B.; Johnson, A.; et al. Spillover of highly pathogenic avian influenza H5N1 virus to dairy cattle. Nature 2024, 634, 669–676. [Google Scholar] [CrossRef]
- Judson, S.D.; Munster, V.J. The Multiple Origins of Ebola Disease Outbreaks. J. Infect. Dis. 2023, 228, S465–S473. [Google Scholar] [CrossRef]
- Westhoven, S.; Bertzbach, L.D.; Kloehn, M.; Mahncke, C.; Heinen, N.; Brown, R.J.P.; Pfaender, S. From zoonotic spillover to endemicity: the broad determinants of human coronavirus tropism. mBio 2025, 16, e0243725. [Google Scholar] [CrossRef]
- Paison, F.; Ubuzima, P.M.; Nshimiyimana, E.M.; Habumugisha, J.M.; Atukunda, S.M.; Ayebare, F.B.; Munyurangabo, G.M.; Amikoro, B.M.; Su, B. Therapeutic advances in Marburg virus disease: from experimental treatments to vaccine development. Ann. Med. Surg. 2025, 87, 2784–2799. [Google Scholar] [CrossRef]
- Van Den Hoogen, B.G.; De Jong, J.C.; Groen, J.; Kuiken, T.; De Groot, R.; Fouchier, R.A.; Osterhaus, A.D. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat. Med. 2001, 7, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Fauquet, C.M.; Mayo, M.A. The 7th ICTV Report. Arch. Virol. 2001, 146, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Ling, R.; Easton, A.J.; Pringle, C.R. Sequence analysis of the 22K, SH and G genes of turkey rhinotracheitis virus and their intergenic regions reveals a gene order different from that of other pneumoviruses. J. Gen. Virol. 1992, 73, 1709–1715. [Google Scholar] [CrossRef] [PubMed]
- Boivin, G.; Abed, Y.; Pelletier, G.; Ruel, L.; Moisan, D.; Côté, S.; Peret, T.C.T.; Erdman, D.D.; Anderson, L.J. Virological Features and Clinical Manifestations Associated with Human Metapneumovirus: A New Paramyxovirus Responsible for Acute Respiratory-Tract Infections in All Age Groups. J. Infect. Dis. 2002, 186, 1330–1334. [Google Scholar] [CrossRef]
- Wolf, D.G.; Zakay-Rones, Z.; Fadeela, A.; Greenberg, D.; Dagan, R. High Seroprevalence of Human Metapneumovirus among Young Children in Israel. J. Infect. Dis. 2003, 188, 1865–1867. [Google Scholar] [CrossRef]
- Ebihara, T.; Endo, R.; Kikuta, H.; Ishiguro, N.; Yoshioka, M.; Ma, X.; Kobayashi, K. Seroprevalence of human metapneumovirus in Japan. J. Med Virol. 2003, 70, 281–283. [Google Scholar] [CrossRef] [PubMed]
- Hamelin, M.; Abed, Y.; Boivin, G. Human Metapneumovirus: A New Player among Respiratory Viruses. Clin. Infect. Dis. 2004, 38, 983–990. [Google Scholar] [CrossRef]
- Madhi, S.A.; Ludewick, H.; Abed, Y.; Klugman, K.P.; Boivin, G. Human Metapneumovirus-Associated Lower Respiratory Tract Infections among Hospitalized Human Immunodeficiency Virus Type 1 (HIV-1)-Infected and HIV-1-Uninfected African Infants. Clin. Infect. Dis. 2003, 37, 1705–1710. [Google Scholar] [CrossRef]
- Schildgen, V.; van den Hoogen, B.G.; Fouchier, R.; Tripp, R.; Alvarez, R.A.; Manoha, C.; Williams, J.; Schildgen, O. Human Metapneumovirus: Lessons Learned over the First Decade. Clin. Microbiol. Rev. 2011, 24, 734–754. [Google Scholar] [CrossRef]
- Evans, A.S.; Brachman, P.S. Bacterial infections of humans: epidemiology and control. Rev. do Inst. de Med. Trop. de Sao Paulo 1993, 35, 274–274. [Google Scholar] [CrossRef]
- Hoogen BGvd, Herfst S, Sprong L, Cane PA, Forleo-Neto E, Swart RLd, et al. Antigenic and Genetic Variability of Human Metapneumoviruses. Emerging Infectious Diseases. 2004 Apr;10(4).
- Groen, K.; van Nieuwkoop, S.; Bestebroer, T.M.; Fraaij, P.L.; Fouchier, R.A.; Hoogen, B.G.v.D. Whole genome sequencing of human metapneumoviruses from clinical specimens using MinION nanopore technology. Virus Res. 2021, 302, 198490. [Google Scholar] [CrossRef]
- Hadfield, J.; Megill, C.; Bell, S.M.; Huddleston, J.; Potter, B.; Callender, C.; Sagulenko, P.; Bedford, T.; Neher, R.A. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 2018, 34, 4121–4123. [Google Scholar] [CrossRef] [PubMed]
- Joia IN, Richard. Human metapneumovirus phylogeny Nextstrain2025 [updated 2025-11-05. Available from: https://nextstrain.org/hmpv/all/genome.
- Huck, B.; Scharf, G.; Neumann-Haefelin, D.; Puppe, W.; Weigl, J.; Falcone, V. Novel Human Metapneumovirus Sublineage. Emerg. Infect. Dis. 2006, 12, 147–150. [Google Scholar] [CrossRef]
- Nao, N.; Saikusa, M.; Sato, K.; Sekizuka, T.; Usuku, S.; Tanaka, N.; Nishimura, H.; Takeda, M. Recent Molecular Evolution of Human Metapneumovirus (HMPV): Subdivision of HMPV A2b Strains. Microorganisms 2020, 8, 1280. [Google Scholar] [CrossRef]
- Regev, L.; Meningher, T.; Hindiyeh, M.; Mendelson, E.; Mandelboim, M. Increase Human Metapneumovirus Mediated Morbidity following Pandemic Influenza Infection. PLOS ONE 2012, 7, e34750. [Google Scholar] [CrossRef]
- Martínez-Marrero, N.; Muñoz-Escalante, J.C.; Yerena-Rivera, J.M.; Jaime-Rocha, L.R.; Leija-Martínez, J.J.; González-Ortiz, A.M.; Noyola, D.E. Molecular Epidemiology of Human Metapneumovirus Infections in Children from San Luis Potosí-Mexico. Viruses 2025, 17, 1338. [Google Scholar] [CrossRef] [PubMed]
- Groen K, Nieuwkoop Sv, Meijer A, Veer Bvd, Kampen JJAv, Fraaij PL, et al. Emergence and Potential Extinction of Genetic Lineages of Human Metapneumovirus between 2005 and 2021. mBio. 2022-12-12;14(1).
- Devanathan, N.; Philomenadin, F.S.; Panachikuth, G.; Jayagandan, S.; Ramamurthy, N.; Ratchagadasse, V.R.; Chandrasekaran, V.; Dhodapkar, R. Emerging lineages A2.2.1 and A2.2.2 of human metapneumovirus (hMPV) in pediatric respiratory infections: Insights from India. IJID Reg. 2024, 14, 100486. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, AK. Mechanisms of G-gene heterogeneities and a new method of genotyping of human metapneumovirus. bioRxiv. 2025-03-13.
- Muñoz-Escalante, J.C.; Mata-Moreno, G.; Rivera-Alfaro, G.; Noyola, D.E. Global Extension and Predominance of Human Metapneumovirus A2 Genotype with Partial G Gene Duplication. Viruses 2022, 14, 1058. [Google Scholar] [CrossRef]
- Piñana, M.; González-Sánchez, A.; Andrés, C.; Abanto, M.; Vila, J.; Esperalba, J.; Moral, N.; Espartosa, E.; Saubi, N.; Creus, A.; et al. The emergence, impact, and evolution of human metapneumovirus variants from 2014 to 2021 in Spain. J. Infect. 2023, 87, 103–110. [Google Scholar] [CrossRef]
- Oong, X.Y.; Chook, J.B.; Ng, K.T.; Chow, W.Z.; Chan, K.G.; Hanafi, N.S.; Pang, Y.K.; Chan, Y.F.; Kamarulzaman, A.; Tee, K.K. The role of human Metapneumovirus genetic diversity and nasopharyngeal viral load on symptom severity in adults. Virol. J. 2018, 15, 91. [Google Scholar] [CrossRef]
- Chow, W.Z.; Chan, Y.F.; Oong, X.Y.; Ng, L.J.; Nor’e, S.S.; Ng, K.T.; Chan, K.G.; Hanafi, N.S.; Pang, Y.K.; Kamarulzaman, A.; et al. Genetic diversity, seasonality and transmission network of human metapneumovirus: identification of a unique sub-lineage of the fusion and attachment genes. Sci. Rep. 2016, 6, 27730. [Google Scholar] [CrossRef] [PubMed]
- Elias-Warren, A.; Bennett, J.C.; Iwu, C.D.; Starita, L.M.; Stone, J.; Capodanno, B.; Prentice, R.; Han, P.D.; Acker, Z.; Grindstaff, S.B.; et al. Epidemiology of Human Metapneumovirus Infection in a Community Setting, Seattle, Washington, USA. J. Infect. Dis. 2025, 232, S78–S92. [Google Scholar] [CrossRef]
- Buys SB, and Du Preez, J. H. A preliminary report on the isolation of a virus causing sinusitis in turkeys in South Africa and attempts to attenuate the virus. Turkeys. 1980;28: 36.
- Brown, P.A.; Lemaitre, E.; Briand, F.-X.; Courtillon, C.; Guionie, O.; Allée, C.; Toquin, D.; Bayon-Auboyer, M.-H.; Jestin, V.; Eterradossi, N. Molecular Comparisons of Full Length Metapneumovirus (MPV) Genomes, Including Newly Determined French AMPV-C and –D Isolates, Further Supports Possible Subclassification within the MPV Genus. PLOS ONE 2014, 9, e102740. [Google Scholar] [CrossRef]
- MH B-A, C A, D T, N E. Nucleotide sequences of the F, L and G protein genes of two non-A/non-B avian pneumoviruses (APV) reveal a novel APV subgroup - PubMed. The Journal of general virology. 2000 Nov;81(Pt 11).
- Graziosi, G.; Lupini, C.; Catelli, E. Disentangling the role of wild birds in avian metapneumovirus (aMPV) epidemiology: A systematic review and meta-analysis. Transbound. Emerg. Dis. 2022, 69, 3285–3299. [Google Scholar] [CrossRef]
- Goraichuk IV, Torchetti MK, Killian ML, Kapczynski DR, Sary K, Kulkarni A, et al. Frontiers | Introduction of Avian metapneumovirus subtype A to the United States: molecular insights and implications. Frontiers in Microbiology. 2024/07/05;15.
- J Z, L T, J D, B G, K K-B, E K, et al. Isolation and characterization of avian metapneumovirus subtypes A and B associated with the 2024 disease outbreaks among poultry in the USA - PubMed. Journal of clinical microbiology. 08/13/2025;63(8).
- USDA. Avian Metapneumovirus Update USDA APHIS Website2024 [updated , 2024. Available from: https://www.aphis.usda.gov/news/program-update/avian-metapneumovirus-update#:~:text=These%20samples%20originated%20from%20turkeys%20and%20broilers,previously%20been%20identified%20in%20the%20United%20States. 1 March.
- APHIS, U. Avian Metapneumovirus Questions and Answers 2025 [Available from: https://www.aphis.usda.gov/veterinary-biologics/avian-metapneumovirus-questions-answers.
- Hoogen BGvd, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Analysis of the Genomic Sequence of a Human Metapneumovirus. Virology. 2002/03/30;295(1).
- Decool, H.; Bardiaux, B.; Ruano, L.C.; Sperandio, O.; Fix, J.; Gutsche, I.; Richard, C.-A.; Bajorek, M.; Eléouët, J.-F.; Galloux, M. Characterization of the Interaction Domains between the Phosphoprotein and the Nucleoprotein of Human Metapneumovirus. J. Virol. 2022, 96, e0090921. [Google Scholar] [CrossRef] [PubMed]
- Kariithi, H.M.; Christy, N.; Decanini, E.L.; Lemiere, S.; Volkening, J.D.; Afonso, C.L.; Suarez, D.L. Detection and Genome Sequence Analysis of Avian Metapneumovirus Subtype A Viruses Circulating in Commercial Chicken Flocks in Mexico. Veter- Sci. 2022, 9, 579. [Google Scholar] [CrossRef] [PubMed]
- Nucleocapsid assembly in pneumoviruses is regulated by conformational switching of the N protein. eLife. 2016-02-15;5.
- Boggs, K.B.; Edmonds, K.; Cifuentes-Munoz, N.; El Najjar, F.; Ossandón, C.; Roe, M.; Wu, C.; Moncman, C.L.; Creamer, T.P.; Amarasinghe, G.K.; et al. Human Metapneumovirus Phosphoprotein Independently Drives Phase Separation and Recruits Nucleoprotein to Liquid-Like Bodies. mBio 2022, 13, e0109922. [Google Scholar] [CrossRef]
- El Najjar, F.; Cifuentes-Muñoz, N.; Chen, J.; Zhu, H.; Buchholz, U.J.; Moncman, C.L.; Dutch, R.E. Human metapneumovirus Induces Reorganization of the Actin Cytoskeleton for Direct Cell-to-Cell Spread. PLOS Pathog. 2016, 12, e1005922. [Google Scholar] [CrossRef]
- Heim, C.J.; Hoogen, B.G.v.D.; Dutch, R.E. Human metapneumovirus: understanding the molecular mechanisms and pathology of infection. J. Virol. 2025, 99, e0028425. [Google Scholar] [CrossRef]
- pathology of infection. Journal of Virology. 2025-10-23;99(10).
- Whitehead, J.D.; Decool, H.; Leyrat, C.; Carrique, L.; Fix, J.; Eléouët, J.-F.; Galloux, M.; Renner, M. Structure of the N-RNA/P interface indicates mode of L/P recruitment to the nucleocapsid of human metapneumovirus. Nat. Commun. 2023, 14, 1–14. [Google Scholar] [CrossRef]
- Pan, J.; Qian, X.; Lattmann, S.; El Sahili, A.; Yeo, T.H.; Jia, H.; Cressey, T.; Ludeke, B.; Noton, S.; Kalocsay, M.; et al. Structure of the human metapneumovirus polymerase phosphoprotein complex. Nature 2019, 577, 275–279. [Google Scholar] [CrossRef]
- Leyrat, C.; Renner, M.; Harlos, K.; Huiskonen, J.T.; Grimes, J.M. Structure and Self-Assembly of the Calcium Binding Matrix Protein of Human Metapneumovirus. Structure 2014, 22, 136–148. [Google Scholar] [CrossRef]
- Sabo, Y.; Ehrlich, M.; Bacharach, E. The Conserved YAGL Motif in Human Metapneumovirus Is Required for Higher-Order Cellular Assemblies of the Matrix Protein and for Virion Production. J. Virol. 2011, 85, 6594–6609. [Google Scholar] [CrossRef]
- Amarasinghe, G.K.; Dutch, R.E. A Calcium-Fortified Viral Matrix Protein. Structure 2014, 22, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Bagnaud-Baule, A.; Reynard, O.; Perret, M.; Berland, J.-L.; Maache, M.; Peyrefitte, C.; Vernet, G.; Volchkov, V.; Paranhos-Baccalà, G. The Human Metapneumovirus Matrix Protein Stimulates the Inflammatory Immune Response In Vitro. PLOS ONE 2011, 6, e17818. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chopra, P.; Liu, L.; Nagy, T.; Murray, J.; Tripp, R.A.; Boons, G.-J.; Mousa, J.J. Structure, Immunogenicity, and Conformation-Dependent Receptor Binding of the Postfusion Human Metapneumovirus F Protein. J. Virol. 2021, 95, e0059321. [Google Scholar] [CrossRef]
- Wen, X.; Krause, J.C.; Leser, G.P.; Cox, R.G.; Lamb, R.A.; Williams, J.V.; Crowe, J., Jr.; Jardetzky, T.S. Structure of the human metapneumovirus fusion protein with neutralizing antibody identifies a pneumovirus antigenic site. Nat. Struct. Mol. Biol. 2012, 19, 461–463. [Google Scholar] [CrossRef]
- Battles, M.B.; Más, V.; Olmedillas, E.; Cano, O.; Vázquez, M.; Rodríguez, L.; Melero, J.A.; McLellan, J.S. Structure and immunogenicity of pre-fusion-stabilized human metapneumovirus F glycoprotein. Nat. Commun. 2017, 8, 1–11. [Google Scholar] [CrossRef]
- Wei, Y.; Feng, K.; Yao, X.; Cai, H.; Li, J.; Mirza, A.M.; Iorio, R.M.; Li, J. Localization of a Region in the Fusion Protein of Avian Metapneumovirus That Modulates Cell-Cell Fusion. J. Virol. 2012, 86, 11800–11814. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Xie, Z.; Xu, L. Receptors and host factors: key players in human metapneumovirus infection. Front. Cell. Infect. Microbiol. 2025, 15, 1557880. [Google Scholar] [CrossRef]
- Yun, B.-L.; Guan, X.-L.; Liu, Y.-Z.; Zhang, Y.; Wang, Y.-Q.; Qi, X.-L.; Cui, H.-Y.; Liu, C.-J.; Zhang, Y.-P.; Gao, H.-L.; et al. Integrin αvβ1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection. J. Biol. Chem. 2016, 291, 14815–14825. [Google Scholar] [CrossRef]
- Cui, Y.; Li, S.; Xu, W.; Li, Y.; Xie, J.; Wang, D.; Guo, J.; Zhou, J.; Feng, X.; Hou, L.; et al. A Receptor Integrin β1 Promotes Infection of Avian Metapneumovirus Subgroup C by Recognizing a Viral Fusion Protein RSD Motif. Int. J. Mol. Sci. 2024, 25, 829. [Google Scholar] [CrossRef]
- Schowalter, R.M.; Smith, S.E.; Dutch, R.E. Characterization of Human Metapneumovirus F Protein-Promoted Membrane Fusion: Critical Roles for Proteolytic Processing and Low pH. J. Virol. 2006, 80, 10931–10941. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, U.J.; Biacchesi, S.; Pham, Q.N.; Tran, K.C.; Yang, L.; Luongo, C.L.; Skiadopoulos, M.H.; Murphy, B.R.; Collins, P.L. Deletion of M2 Gene Open Reading Frames 1 and 2 of Human Metapneumovirus: Effects on RNA Synthesis, Attenuation, and Immunogenicity. J. Virol. 2005, 79, 6588–6597. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Zhang, Y.; Ma, Y.; Sun, J.; Liang, X.; Li, J. Zinc Binding Activity of Human Metapneumovirus M2-1 Protein Is Indispensable for Viral Replication and Pathogenesis In Vivo. J. Virol. 2015, 89, 6391–6405. [Google Scholar] [CrossRef]
- Drastic changes in conformational dynamics of the antiterminator M2-1 regulate transcription efficiency in Pneumovirinae. eLife. 2014-05-19;3.
- JA J, MK N, R A, K M, P B, D C, et al. Subtype B avian metapneumovirus resembles subtype A more closely than subtype C or human metapneumovirus with respect to the phosphoprotein, and second matrix and small hydrophobic proteins - PubMed. Virus research. 2003 Apr;92(2).
- Kitagawa, Y.; Zhou, M.; Yamaguchi, M.; Komatsu, T.; Takeuchi, K.; Itoh, M.; Gotoh, B. Human metapneumovirus M2-2 protein inhibits viral transcription and replication. Microbes Infect. 2010, 12, 135–145. [Google Scholar] [CrossRef]
- Tanaka, Y.; Morita, N.; Kitagawa, Y.; Gotoh, B.; Komatsu, T. Human metapneumovirus M2-2 protein inhibits RIG-I signaling by preventing TRIM25-mediated RIG-I ubiquitination. Front. Immunol. 2022, 13, 970750. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Ptashkin, R.N.; Wang, Q.; Liu, G.; Zhang, G.; Lee, I.; Lee, Y.S.; Bao, X. Human Metapneumovirus Infection Induces Significant Changes in Small Noncoding RNA Expression in Airway Epithelial Cells. Mol. Ther. - Nucleic Acids 2014, 3, e163. [Google Scholar] [CrossRef]
- Schickli, J.H.; Kaur, J.; MacPhail, M.; Guzzetta, J.M.; Spaete, R.R.; Tang, R.S. Deletion of human metapneumovirus M2-2 increases mutation frequency and attenuates growth in hamsters. Virol. J. 2008, 5, 69–69. [Google Scholar] [CrossRef]
- Masante, C.; El Najjar, F.; Chang, A.; Jones, A.; Moncman, C.L.; Dutch, R.E. The Human Metapneumovirus Small Hydrophobic Protein Has Properties Consistent with Those of a Viroporin and Can Modulate Viral Fusogenic Activity. J. Virol. 2014, 88, 6423–6433. [Google Scholar] [CrossRef]
- Brynes, A.; Williams, J.V. Small hydrophobic (SH) proteins of Pneumoviridae and Paramyxoviridae : small but mighty. J. Virol. 2024, 98, e0080924. [Google Scholar] [CrossRef]
- Bao, X.; Kolli, D.; Liu, T.; Shan, Y.; Garofalo, R.P.; Casola, A. Human Metapneumovirus Small Hydrophobic Protein Inhibits NF-κB Transcriptional Activity. J. Virol. 2008, 82, 8224–8229. [Google Scholar] [CrossRef]
- Bao, X.; Kolli, D.; Esham, D.; Velayutham, T.S.; Casola, A. Human Metapneumovirus Small Hydrophobic Protein Inhibits Interferon Induction in Plasmacytoid Dendritic Cells. Viruses 2018, 10, 278. [Google Scholar] [CrossRef]
- Brynes, A.; Zhang, Y.; Williams, J.V. Human metapneumovirus SH protein promotes JAK1 degradation to impair host IL-6 signaling. J. Virol. 2024, 98, e0110424. [Google Scholar] [CrossRef]
- Naylor, C.J.; Brown, P.A.; Edworthy, N.; Ling, R.; Jones, R.C.; Savage, C.E.; Easton, A.J. Development of a reverse-genetics system for Avian pneumovirus demonstrates that the small hydrophobic (SH) and attachment (G) genes are not essential for virus viability. J. Gen. Virol. 2004, 85, 3219–3227. [Google Scholar] [CrossRef] [PubMed]
- Yunus, A.S.; Govindarajan, D.; Huang, Z.; Samal, S.K. Deduced amino acid sequence of the small hydrophobic protein of US avian pneumovirus has greater identity with that of human metapneumovirus than those of non-US avian pneumoviruses. Virus Res. 2003, 93, 91–97. [Google Scholar] [CrossRef]
- V B, S B. Role of metapneumoviral glycoproteins in the evasion of the host cell innate immune response - PubMed. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2021 Dec;96.
- Bao, X.; Liu, T.; Shan, Y.; Li, K.; Garofalo, R.P.; Casola, A. Human Metapneumovirus Glycoprotein G Inhibits Innate Immune Responses. PLOS Pathog. 2008, 4, e1000077–e1000077. [Google Scholar] [CrossRef]
- Naylor, C.J.; Ling, R.; Edworthy, N.; Savage, C.E.; Easton, A.J. Avian metapneumovirus SH gene end and G protein mutations influence the level of protection of live-vaccine candidates. J. Gen. Virol. 2007, 88, 1767–1775. [Google Scholar] [CrossRef] [PubMed]
- Biacchesi, S.; Pham, Q.N.; Skiadopoulos, M.H.; Murphy, B.R.; Collins, P.L.; Buchholz, U.J. Infection of Nonhuman Primates with Recombinant Human Metapneumovirus Lacking the SH, G, or M2-2 Protein Categorizes Each as a Nonessential Accessory Protein and Identifies Vaccine Candidates. J. Virol. 2005, 79, 12608–12613. [Google Scholar] [CrossRef] [PubMed]
- Biacchesi, S.; Skiadopoulos, M.H.; Yang, L.; Lamirande, E.W.; Tran, K.C.; Murphy, B.R.; Collins, P.L.; Buchholz, U.J. Recombinant Human Metapneumovirus Lacking the Small Hydrophobic SH and/or Attachment G Glycoprotein: Deletion of G Yields a Promising Vaccine Candidate. J. Virol. 2004, 78, 12877–12887. [Google Scholar] [CrossRef]
- Gaunt, E.R.; Jansen, R.R.; Poovorawan, Y.; E Templeton, K.; Toms, G.L.; Simmonds, P. Molecular Epidemiology and Evolution of Human Respiratory Syncytial Virus and Human Metapneumovirus. PLOS ONE 2011, 6, e17427. [Google Scholar] [CrossRef] [PubMed]
- Cecchinato, M.; Catelli, E.; Lupini, C.; Ricchizzi, E.; Clubbe, J.; Battilani, M.; Naylor, C.J. Avian metapneumovirus (AMPV) attachment protein involvement in probable virus evolution concurrent with mass live vaccine introduction. Veter- Microbiol. 2010, 146, 24–34. [Google Scholar] [CrossRef]
- Alvarez, R.; Lwamba, H.M.; Kapczynski, D.R.; Njenga, M.K.; Seal, B.S. Nucleotide and Predicted Amino Acid Sequence-Based Analysis of the Avian Metapneumovirus Type C Cell Attachment Glycoprotein Gene: Phylogenetic Analysis and Molecular Epidemiology of U.S. Pneumoviruses. J. Clin. Microbiol. 2003, 41, 1730–1735. [Google Scholar] [CrossRef]
- Govindarajan, D.; Yunus, A.S.; Samal, S.K. Complete sequence of the G glycoprotein gene of avian metapneumovirus subgroup C and identification of a divergent domain in the predicted protein. J. Gen. Virol. 2004, 85, 3671–3675. [Google Scholar] [CrossRef]
- Wen, S.C.; Williams, J.V. New Approaches for Immunization and Therapy against Human Metapneumovirus. Clin. Vaccine Immunol. 2015, 22, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, D.; Samal, S.K. Sequence analysis of the large polymerase (L) protein of the US strain of avian metapneumovirus indicates a close resemblance to that of the human metapneumovirus. Virus Res. 2004, 105, 59–66. [Google Scholar] [CrossRef]
- Piyaratna, R.; Tollefson, S.J.; Williams, J.V. Genomic analysis of four human metapneumovirus prototypes. Virus Res. 2011, 160, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Liu, T.; Shan, Y.; Li, K.; Garofalo, R.P.; Casola, A. Human Metapneumovirus Glycoprotein G Inhibits Innate Immune Responses. PLOS Pathog. 2008, 4, e1000077–e1000077. [Google Scholar] [CrossRef]
- Hastings, A.K.; Amato, K.R.; Wen, S.C.; Peterson, L.S.; Williams, J.V. Human metapneumovirus small hydrophobic (SH) protein downregulates type I IFN pathway signaling by affecting STAT1 expression and phosphorylation. Virology 2016, 494, 248–256. [Google Scholar] [CrossRef]
- Hartmann, S.; Sid, H.; Rautenschlein, S. Avian metapneumovirus infection of chicken and turkey tracheal organ cultures: comparison of virus–host interactions. Avian Pathol. 2015, 44, 480–489. [Google Scholar] [CrossRef]
- F B, N R, H S, A H, G G, A O, et al. In Vitro Investigation of the Interaction of Avian Metapneumovirus and Newcastle Disease Virus with Turkey Respiratory and Reproductive Tissue - PubMed. Viruses. 03/31/2023;15(4).
- Gharaibeh, S.; Shamoun, M. Avian Metapneumovirus Subtype B Experimental Infection and Tissue Distribution in Chickens, Sparrows, and Pigeons. Veter- Pathol. 2011, 49, 704–709. [Google Scholar] [CrossRef]
- Rüger, N.; Sid, H.; Meens, J.; Szostak, M.P.; Baumgärtner, W.; Bexter, F.; Rautenschlein, S. New Insights into the Host–Pathogen Interaction of Mycoplasma gallisepticum and Avian Metapneumovirus in Tracheal Organ Cultures of Chicken. Microorganisms 2021, 9, 2407. [Google Scholar] [CrossRef]
- Jirjis, F.F.; Noll, S.L.; Halvorson, D.A.; Nagaraja, K.V.; Martin, F.; Shaw, D.P. Effects of Bacterial Coinfection on the Pathogenesis of Avian Pneumovirus Infection in Turkeys. Avian Dis. 2004, 48, 34–49. [Google Scholar] [CrossRef]
- Aung, Y.H.; Liman, M.; Neumann, U.; Rautenschlein, S. Reproducibility of swollen sinuses in broilers by experimental infection with avian metapneumovirus subtypes A and B of turkey origin and their comparative pathogenesis. Avian Pathol. 2008, 37, 65–74. [Google Scholar] [CrossRef] [PubMed]
- UMAR S, SABIR H, AHMED A, SUBHAN S. Avian metapneumovirus infection in poultry | World’s Poultry Science Journal | Cambridge Core. World’s Poultry Science Journal. 2016/12;72(4).
- Kaboudi, K.; Lachheb, J. Avian metapneumovirus infection in turkeys: a review on turkey rhinotracheitis. J. Appl. Poult. Res. 2021, 30. [Google Scholar] [CrossRef]
- Salles, G.B.C.; Pilati, G.V.T.; Savi, B.P.; Muniz, E.C.; Dahmer, M.; Vogt, J.R.; Neto, A.J.d.L.; Fongaro, G. Surveillance of Avian Metapneumovirus in Non-Vaccinated Chickens and Co-Infection with Avian Pathogenic Escherichia coli. Microorganisms 2023, 12, 56. [Google Scholar] [CrossRef]
- Yadav, J.P.; Singh, Y.; Batra, K.; Khurana, S.K.; Mahajan, N.K.; Jindal, N. Molecular detection of respiratory avian mycoplasmosis associated bacterial and viral concurrent infections in the poultry flocks. Anim. Biotechnol. 2022, 34, 1474–1482. [Google Scholar] [CrossRef] [PubMed]
- Jirjis FF, Noll SL, Halvorson DA, Nagaraja KV, Shaw DP, F. F. Jirjis SLN, D. A. Halvorson,K. V. Nagaraja,D. P. Shaw. Pathogenesis of Avian Pneumovirus Infection in Turkeys. Veterinary Pathology. 2002-5;39(3).
- Paramyxoviridae and Pneumoviridae. Fenner’s Veterinary Virology. 2017/01/01.
- Liman, M.; Rautenschlein, S. Induction of local and systemic immune reactions following infection of turkeys with avian Metapneumovirus (aMPV) subtypes A and B. Veter- Immunol. Immunopathol. 2007, 115, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Śmiałek, M.; Tykałowski, B.; Dziewulska, D.; Kowalczyk, J.; Koncicki, A. IFNγ production profile in turkeys of different immunological status after TRT vaccination. J. Veter- Res. 2020, 64, 239–245. [Google Scholar] [CrossRef]
- Ball, C.; Manswr, B.; Herrmann, A.; Lemiere, S.; Ganapathy, K. Avian metapneumovirus subtype B vaccination in commercial broiler chicks: heterologous protection and selected host transcription responses to subtype A or B challenge. Avian Pathol. 2022, 51, 181–196. [Google Scholar] [CrossRef]
- Smialek, M.; Pestka, D.; Tykalowski, B.; Stenzel, T.; Koncicki, A. Development of vaccine-induced immunity against TRT in turkeys depends remarkably on the level of maternal antibodies and the age of birds on the day of vaccination. BMC Veter- Res. 2015, 11, 28–28. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda-Alfaro, J.; Catalán, E.A.; Vallejos, O.P.; Ramos-Tapia, I.; Madrid-Muñoz, C.; Mendoza-León, M.J.; Suazo, I.D.; Rivera-Asin, E.; Silva, P.H.; Alvarez-Mardones, O.; et al. Human metapneumovirus respiratory infection affects both innate and adaptive intestinal immunity. Front. Immunol. 2024, 15, 1330209. [Google Scholar] [CrossRef] [PubMed]
- Śmiałek, M.; Kowalczyk, J.; Gesek, M.; Kaczorek-Łukowska, E.; Dziewulska, D.; Tykałowski, B.; Koncicki, A. The influence of maternally derived antibodies on protection against aMPV/A infection in TRT vaccinated turkeys. Poult. Sci. 2021, 100, 101086. [Google Scholar] [CrossRef]
- Bao, Y.; Yu, M.; Liu, P.; Hou, F.; Muhammad, F.; Wang, Z.; Li, X.; Zhang, Z.; Wang, S.; Chen, Y.; et al. Novel Inactivated Subtype B Avian Metapneumovirus Vaccine Induced Humoral and Cellular Immune Responses. Vaccines 2020, 8, 762. [Google Scholar] [CrossRef]
- Tamam, S.M.; Hussein, A.S.; Arafa, A.M.; Madbouly, H.M. Preparation and evaluation of inactivated avian Metapneumovirus vaccine from recently isolated Egyptian strain. J. Appl. Poult. Res. 2015, 24, 168–176. [Google Scholar] [CrossRef]
- Rubbenstroth, D.; Rautenschlein, S. Investigations on the protective role of passively transferred antibodies against avian metapneumovirus infection in turkeys. Avian Pathol. 2009, 38, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Śmiałek, M.; Tykałowski, B.; Pestka, D.; Welenc, J.; Stenzel, T.; Koncicki, A. Three-step Anti-aMPV IgA Expression Profile Evaluation in Turkeys of Different Immunological Status after TRT Vaccination. Pol. J. Veter- Sci. 2016, 19, 509–518. [Google Scholar] [CrossRef]
- Salles, G.B.C.; Pilati, G.V.T.; Muniz, E.C.; Neto, A.J.d.L.; Vogt, J.R.; Dahmer, M.; Savi, B.P.; Padilha, D.A.; Fongaro, G. Trends and Challenges in the Surveillance and Control of Avian Metapneumovirus. Viruses 2023, 15, 1960. [Google Scholar] [CrossRef]
- Kovács, L.; Domaföldi, G.; Bertram, P.-C.; Farkas, M.; Könyves, L.P. Biosecurity Implications, Transmission Routes and Modes of Economically Important Diseases in Domestic Fowl and Turkey. Veter- Sci. 2025, 12, 391. [Google Scholar] [CrossRef]
- Graziosi, G.; Mescolini, G.; Silveira, F.; Lupini, C.; Tucciarone, C.M.; Franzo, G.; Cecchinato, M.; Legnardi, M.; Gobbo, F.; Terregino, C.; et al. First detection of avian metapneumovirus subtype C Eurasian lineage in a Eurasian wigeon (Mareca penelope) wintering in Northeastern Italy: an additional hint on the role of migrating birds in the viral epidemiology. Avian Pathol. 2022, 51, 283–290. [Google Scholar] [CrossRef]
- Newcastle Disease, Other Avian Paramyxoviruses, and Avian Metapneumovirus Infections. Diseases of Poultry. 2013.
- Pathologists AAoA. Avian Disease Manual (7th Edition). American Association of Avian Pathologists, Inc.; 2013. p. 26-8, 242-3.
- Cha, R.M.; Yu, Q.; Zsak, L. The pathogenicity of avian metapneumovirus subtype C wild bird isolates in domestic turkeys. Virol. J. 2013, 10, 38–38. [Google Scholar] [CrossRef]
- Hui ZZ, Yuan ZT, Xia GY, Jun C, Gang QG, Zhong ML, et al. Serosurvey of Avian metapneumovirus, Orithobacterium rhinotracheale, and Chlamydia psittaci and Their Potential Association with Avian Airsacculitis. Biomedical and Environmental Sciences. 2018-05-01;31(5).
- Gough RE, Jones RC. Avian Metapneumovirus. In: Glisson DESJR, McDougald LR, Nolan LK, Suarez DL, Nair V, editors. Diseases of Poultry. 12th ed. Ames, IA: Wiley-Blackwell; 2013. p. 125-38.
- BT V, KV N, AJ T, DP S, GC G, DA H. Human Metapneumovirus in Turkey Poults. Emerging Infectious Diseases. 2006;12(12):1853-1859.
- McMullin, P.F. Diseases of poultry 14th edition. Avian Pathol. 2020, 49, 526–526. [Google Scholar] [CrossRef]
- Slater, O.M.; Terio, K.A.; Zhang, Y.; Erdman, D.D.; Schneider, E.; Kuypers, J.M.; Wolinsky, S.M.; Kunstman, K.J.; Kunstman, J.; Kinsel, M.J.; et al. Human Metapneumovirus Infection in Chimpanzees, United States. Emerg. Infect. Dis. 2014, 20, 2115–2118. [Google Scholar] [CrossRef]
- Palacios, G.; Lowenstine, L.J.; Cranfield, M.R.; Gilardi, K.V.; Spelman, L.; Lukasik-Braum, M.; Kinani, J.-F.; Mudakikwa, A.; Nyirakaragire, E.; Bussetti, A.V.; et al. Human Metapneumovirus Infection in Wild Mountain Gorillas, Rwanda. Emerg. Infect. Dis. 2011, 17, 711–713. [Google Scholar] [CrossRef]
- Buitendijk, H.; Fagrouch, Z.; Niphuis, H.; Bogers, W.M.; Warren, K.S.; Verschoor, E.J. Retrospective Serology Study of Respiratory Virus Infections in Captive Great Apes. Viruses 2014, 6, 1442–1453. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Bhattacharjee, S.; Singh, A. Human Metapneumovirus: A Comprehensive Epidemiological Analysis of a Global Respiratory Threat. Infect. Chemother. 2025, 57, 194–202. [Google Scholar] [CrossRef] [PubMed]
- F F, A V, L L, N E, F L-D, J B, et al. Presence of the new human metapneumovirus in French children with bronchiolitis - PubMed. The Pediatric infectious disease journal. 2003 Jan;22(1).
- Heikkinen T, Österback R, Peltola V, Jartti T, Vainionpää R. Human Metapneumovirus Infections in Children. Emerging Infectious Diseases. 2008 Jan;14(1).
- Byington, C.L.; Ampofo, K.; Stockmann, C.; Adler, F.R.; Herbener, A.; Miller, T.; Sheng, X.; Blaschke, A.J.; Crisp, R.; Pavia, A.T. Community Surveillance of Respiratory Viruses Among Families in the Utah Better Identification of Germs-Longitudinal Viral Epidemiology (BIG-LoVE) Study. Clin. Infect. Dis. 2015, 61, 1217–1224. [Google Scholar] [CrossRef] [PubMed]
- Billard, M.-N.; Wildenbeest, J.G.; Kole, R.; Rodgers-Gray, B.; Fullarton, J.; Bont, L. Post-Pandemic Dynamics of the Global Circulation of Human Metapneumovirus and Respiratory Syncytial Virus. J. Infect. Dis. 2025, 232, S10–S18. [Google Scholar] [CrossRef]
- Edwards, K.M.; Zhu, Y.; Griffin, M.R.; Weinberg, G.A.; Hall, C.B.; Szilagyi, P.G.; Staat, M.A.; Iwane, M.; Prill, M.M.; Williams, J.V. Burden of Human Metapneumovirus Infection in Young Children. New Engl. J. Med. 2013, 368, 633–643. [Google Scholar] [CrossRef] [PubMed]
- NB J, E R, AK W, L G, ZD S, BJ S. Human Metapneumovirus Seasonality and Co-Circulation with Respiratory Syncytial Virus - United States, 2014-2024 - PubMed. MMWR Morbidity and mortality weekly report. 04/03/2025;74(11).
- Williams, J.V.; Edwards, K.M.; Weinberg, G.A.; Griffin, M.R.; Hall, C.B.; Zhu, Y.; Szilagyi, P.G.; Wang, C.K.; Yang, C.; Silva, D.; et al. Population-Based Incidence of Human Metapneumovirus Infection among Hospitalized Children. J. Infect. Dis. 2010, 201, 1890–1898. [Google Scholar] [CrossRef]
- Williams, J.V.; Harris, P.A.; Tollefson, S.J.; Halburnt-Rush, L.L.; Pingsterhaus, J.M.; Edwards, K.M.; Wright, P.F.; Crowe, J.E., Jr. Human Metapneumovirus and Lower Respiratory Tract Disease in Otherwise Healthy Infants and Children. N. Engl. J. Med. 2004, 350, 443–450. [Google Scholar] [CrossRef]
- Davido, B.; Loubet, P. The silent surge: the under-recognised burden of respiratory syncytial virus, human metapneumovirus, and parainfluenza viruses in adults. Int. J. Infect. Dis. 2025, 159. [Google Scholar] [CrossRef]
- Kulkarni, D.; Cong, B.; Ranjini, M.J.K.; Balchandani, G.; Chen, S.; Liang, J.; Gordon, L.G.; Meulen, A.S.-T.; Wang, X.; Li, Y.; et al. The global burden of human metapneumovirus-associated acute respiratory infections in older adults: a systematic review and meta-analysis. Am. J. Med Sci. 2025, 6, 100679. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.R.; Stockmann, C.; Pavia, A.T.; Byington, C.L.; Blaschke, A.J.; Hersh, A.L.; Thorell, E.A.; Korgenski, K.; Daly, J.; Ampofo, K. Incidence, Morbidity, and Costs of Human Metapneumovirus Infection in Hospitalized Children. J. Pediatr. Infect. Dis. Soc. 2015, 5, 303–311. [Google Scholar] [CrossRef]
- Meher, M.M.; Afrin, M. Global surge of human metapneumovirus (hMPV) and its interactions with microbiome to disease severity. J. Infect. Public Heal. 2025, 19, 103024. [Google Scholar] [CrossRef]
- Howerton, E.; Williams, T.C.; Casalegno, J.-S.; Dominguez, S.; Gunson, R.; Messacar, K.; Metcalf, C.J.E.; Park, S.W.; Viboud, C.; Grenfell, B.T. Using COVID-19 pandemic perturbation to model RSV-hMPV interactions and potential implications under RSV interventions. Nat. Commun. 2025, 16, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Semple, M.G.; Cowell, A.; Dove, W.; Greensill, J.; McNamara, P.S.; Halfhide, C.; Shears, P.; Smyth, R.L.; Hart, C.A. Dual Infection of Infants by Human Metapneumovirus and Human Respiratory Syncytial Virus Is Strongly Associated with Severe Bronchiolitis. J. Infect. Dis. 2005, 191, 382–386. [Google Scholar] [CrossRef]
- Foulongne, V.; Guyon, G.; Rodière, M.; Segondy, M. Human Metapneumovirus Infection in Young Children Hospitalized With Respiratory Tract Disease. Pediatr. Infect. Dis. J. 2006, 25, 354–359. [Google Scholar] [CrossRef]
- Caracciolo S, Minini C, Colombrita D, Rossi D, Miglietti N, Vettore E, et al. Human Metapneumovirus Infection in Young Children Hospitalized With Acute Respiratory Tract Disease: Virologic and Clinical Features. The Pediatric Infectious Disease Journal. 08;27(5). 20 May.
- Li, Y.; Pillai, P.; Miyake, F.; Nair, H. The role of viral co-infections in the severity of acute respiratory infections among children infected with respiratory syncytial virus (RSV): A systematic review and meta-analysis. J. Glob. Heal. 2020, 10, 010426. [Google Scholar] [CrossRef]
- Mohammadi, K.; Faramarzi, S.; Yaribash, S.; Valizadeh, Z.; Rajabi, E.; Ghavam, M.; Samiee, R.; Karim, B.; Salehi, M.; Seifi, A.; et al. Human metapneumovirus (hMPV) in 2025: emerging trends and insights from community and hospital-based respiratory panel analyses—a comprehensive review. Virol. J. 2025, 22, 150. [Google Scholar] [CrossRef]
- Hammitt LL, Dagan R, Yuan Y, Cots MB, Bosheva M, Madhi SA, et al. Nirsevimab for Prevention of RSV in Healthy Late-Preterm and Term Infants. New England Journal of Medicine. 2022-03-03;386(9).
- Ares-Gómez S, Mallah N, Santiago-Pérez M-I, Pardo-Seco J, Pérez-Martínez O, Otero-Barrós M-T, et al. Effectiveness and impact of universal prophylaxis with nirsevimab in infants against hospitalisation for respiratory syncytial virus in Galicia, Spain: initial results of a population-based longitudinal study. The Lancet Infectious Diseases. 2024/08/01;24(8).
- Wilson, E.; Goswami, J.; Baqui, A.H.; Doreski, P.A.; Perez-Marc, G.; Zaman, K.; Monroy, J.; Duncan, C.J.; Ujiie, M.; Rämet, M.; et al. Efficacy and Safety of an mRNA-Based RSV PreF Vaccine in Older Adults. New Engl. J. Med. 2023, 389, 2233–2244. [Google Scholar] [CrossRef]
- Kuiken T, Hoogen BGvd, Riel DAJv, Laman JD, Amerongen Gv, Sprong L, et al. Experimental Human Metapneumovirus Infection of Cynomolgus Macaques (Macaca fascicularis) Results in Virus Replication in Ciliated Epithelial Cells and Pneumocytes with Associated Lesions throughout the Respiratory Tract. The American Journal of Pathology. 2004/06/01;164(6).
- Aerts, L.; Cavanagh, M.-H.; Dubois, J.; Carbonneau, J.; Rhéaume, C.; Lavigne, S.; Couture, C.; Hamelin, M.; Boivin, G. Effect of In Vitro Syncytium Formation on the Severity of Human Metapneumovirus Disease in a Murine Model. PLOS ONE 2015, 10, e0120283–e0120283. [Google Scholar] [CrossRef]
- Vargas, S.O.; Kozakewich, H.P.; Perez-Atayde, A.R.; McAdam, A.J. Pathology of Human Metapneumovirus Infection: Insights into the Pathogenesis of a Newly Identified Respiratory Virus. Pediatr. Dev. Pathol. 2004, 7, 478–486. [Google Scholar] [CrossRef]
- Martínez-Espinoza, I.; Bungwon, A.D.; Guerrero-Plata, A. Human Metapneumovirus-Induced Host microRNA Expression Impairs the Interferon Response in Macrophages and Epithelial Cells. Viruses 2023, 15, 2272. [Google Scholar] [CrossRef]
- Loevenich, S.; Malmo, J.; Liberg, A.M.; Sherstova, T.; Li, Y.; Rian, K.; Johnsen, I.B.; Anthonsen, M.W. Cell-Type-Specific Transcription of Innate Immune Regulators in response to HMPV Infection. Mediat. Inflamm. 2019, 2019, 1–13. [Google Scholar] [CrossRef]
- Kolli, D.; Bao, X.; Casola, A. Human Metapneumovirus Antagonism of Innate Immune Responses. Viruses 2012, 4, 3551–3571. [Google Scholar] [CrossRef] [PubMed]
- Kolli, D.; Gupta, M.R.; Sbrana, E.; Velayutham, T.S.; Chao, H.; Casola, A.; Garofalo, R.P. Alveolar Macrophages Contribute to the Pathogenesis of Human Metapneumovirus Infection while Protecting against Respiratory Syncytial Virus Infection. Am. J. Respir. Cell Mol. Biol. 2014, 51, 502–515. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Espinoza, I.; Plata, A.G. The role of macrophage phagocytosis on respiratory pneumovirus infection and host defense. J. Immunol. 2024, 212, 0154_5996–0154_5996. [Google Scholar] [CrossRef]
- Cheemarla, N.R.; Guerrero-Plata, A. Human Metapneumovirus Attachment Protein Contributes to Neutrophil Recruitment into the Airways of Infected Mice. Viruses 2017, 9, 310. [Google Scholar] [CrossRef]
- Ribó-Molina, P.; van Nieuwkoop, S.; Mykytyn, A.Z.; van Run, P.; Lamers, M.M.; Haagmans, B.L.; Fouchier, R.A.M.; Hoogen, B.G.v.D. Human metapneumovirus infection of organoid-derived human bronchial epithelium represents cell tropism and cytopathology as observed in in vivo models. mSphere 2024, 9, e0074323. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.; Masante, C.; Buchholz, U.J.; Dutch, R.E. Human Metapneumovirus (HMPV) Binding and Infection Are Mediated by Interactions between the HMPV Fusion Protein and Heparan Sulfate. J. Virol. 2012, 86, 3230–3243. [Google Scholar] [CrossRef] [PubMed]
- Klimyte, E.M.; Smith, S.E.; Oreste, P.; Lembo, D.; Dutch, R.E. Inhibition of Human Metapneumovirus Binding to Heparan Sulfate Blocks Infection in Human Lung Cells and Airway Tissues. J. Virol. 2016, 90, 9237–9250. [Google Scholar] [CrossRef]
- Cox, R.G.; Williams, J.V. Breaking In: Human Metapneumovirus Fusion and Entry. Viruses 2013, 5, 192–210. [Google Scholar] [CrossRef]
- Cox, R.G.; Livesay, S.B.; Johnson, M.; Ohi, M.D.; Williams, J.V. The Human Metapneumovirus Fusion Protein Mediates Entry via an Interaction with RGD-Binding Integrins. J. Virol. 2012, 86, 12148–12160. [Google Scholar] [CrossRef]
- Thammawat, S.; Sadlon, T.A.; Hallsworth, P.G.; Gordon, D.L. Role of Cellular Glycosaminoglycans and Charged Regions of Viral G Protein in Human Metapneumovirus Infection. J. Virol. 2008, 82, 11767–11774. [Google Scholar] [CrossRef]
- Bergh, A.V.D.; Bailly, B.; Guillon, P.; von Itzstein, M.; Dirr, L. Novel insights into the host cell glycan binding profile of human metapneumovirus. J. Virol. 2024, 98, e0164123. [Google Scholar] [CrossRef]
- Cox, R.G.; Mainou, B.A.; Johnson, M.; Hastings, A.K.; Schuster, J.E.; Dermody, T.S.; Williams, J.V. Human Metapneumovirus Is Capable of Entering Cells by Fusion with Endosomal Membranes. PLOS Pathog. 2015, 11, e1005303. [Google Scholar] [CrossRef] [PubMed]
- Maertzdorf, J.; Wang, C.K.; Brown, J.B.; Quinto, J.D.; Chu, M.; de Graaf, M.; Hoogen, B.G.v.D.; Spaete, R.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Real-Time Reverse Transcriptase PCR Assay for Detection of Human Metapneumoviruses from All Known Genetic Lineages. J. Clin. Microbiol. 2004, 42, 981–986. [Google Scholar] [CrossRef]
- Jeong, S.; Park, M.-J.; Song, W.; Kim, H.-S. Advances in laboratory assays for detecting human metapneumovirus. Ann. Transl. Med. 2020, 8, 608–608. [Google Scholar] [CrossRef]
- Guionie, O.; Toquin, D.; Sellal, E.; Bouley, S.; Zwingelstein, F.; Allée, C.; Bougeard, S.; Lemière, S.; Eterradossi, N. Laboratory evaluation of a quantitative real-time reverse transcription PCR assay for the detection and identification of the four subgroups of avian metapneumovirus. J. Virol. Methods 2007, 139, 150–158. [Google Scholar] [CrossRef]
- Mahony, J.B. Detection of Respiratory Viruses by Molecular Methods. Clin. Microbiol. Rev. 2008, 21, 716–747. [Google Scholar] [CrossRef]
- CôtÉ, S.; Abed, Y.; Boivin, G. Comparative Evaluation of Real-Time PCR Assays for Detection of the Human Metapneumovirus. J. Clin. Microbiol. 2003, 41, 3631–3635. [Google Scholar] [CrossRef]
- Yajima, T.; Takahashi, H.; Kimura, N.; Sato, K.; Jingu, D.; Ubukata, S.; Shoji, M.; Watanabe, H.; Kodama, E.N.; Nishimura, H. Comparison of sputum specimens and nasopharyngeal swab specimens for diagnosis of acute human metapneumovirus-related lower respiratory tract infections in adults. J. Clin. Virol. 2022, 154, 105238. [Google Scholar] [CrossRef]
- Kim, H.; Hur, M.; Moon, H.; Yun, Y.; Cho, H.C. Comparison of two multiplex PCR assays for the detection of respiratory viral infections. Clin. Respir. J. 2014, 8, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Jokela, P.; Piiparinen, H.; Luiro, K.; Lappalainen, M. Detection of human metapneumovirus and respiratory syncytial virus by duplex real-time RT-PCR assay in comparison with direct fluorescent assay. Clin. Microbiol. Infect. 2010, 16, 1568–1573. [Google Scholar] [CrossRef] [PubMed]
- N B, L L, D W, T T, Y L. Genetic variability of the G glycoprotein gene of human metapneumovirus - PubMed. Journal of clinical microbiology. 2004 Aug;42(8).
- Leyrat, C.; Paesen, G.C.; Charleston, J.; Renner, M.; Grimes, J.M. Structural Insights into the Human Metapneumovirus Glycoprotein Ectodomain. J. Virol. 2014, 88, 11611–11616. [Google Scholar] [CrossRef]
- Cecchinato, M.; Lupini, C.; Pogoreltseva, O.S.M.; Listorti, V.; Mondin, A.; Drigo, M.; Catelli, E. Development of a real-time RT-PCR assay for the simultaneous identification, quantitation and differentiation of avian metapneumovirus subtypes A and B. Avian Pathol. 2013, 42, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Klemenc, J.; Ali, S.A.; Johnson, M.; Tollefson, S.J.; Talbot, H.K.; Hartert, T.V.; Edwards, K.M.; Williams, J.V. Real-time reverse transcriptase PCR assay for improved detection of human metapneumovirus. J. Clin. Virol. 2012, 54, 371–375. [Google Scholar] [CrossRef]
- Sanghavi, S.K.; Bullotta, A.; Husain, S.; Rinaldo, C.R. Clinical evaluation of multiplex real-time PCR panels for rapid detection of respiratory viral infections. J. Med Virol. 2011, 84, 162–169. [Google Scholar] [CrossRef]
- Hang VTT, Ny NTH, Phuc TM, Tam PTT, Huong DT, Nghia HDT, et al. Evaluation of the Luminex xTAG Respiratory Viral Panel FAST v2 assay for detection of multiple respiratory viral pathogens in nasal and throat swabs in Vietnam. Wellcome Open Research. 2018 Apr 30;2.
- Xie, L.-M.; Yin, X.; Xie, T.-A.; Su, J.-W.; Huang, Q.; Zhang, J.-H.; Huang, Y.-F.; Guo, X.-G. Meta-Analysis of the Diagnostic Efficacy of the Luminex xTAG Respiratory Viral Panel FAST v2 Assay for Respiratory Viral Infections. Yonsei Med J. 2022, 63, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Cheng, J.; Xu, X.; Liu, Y.; Zhao, Y.; Wang, Y.; Du, X.; Ying, J.; Yan, J.; Zheng, H.; et al. Establishment and application of a one-step multiplex real-time PCR assay for detection of A, B, and C subtypes of avian metapneumovirus. Poult. Sci. 2024, 104, 104608. [Google Scholar] [CrossRef] [PubMed]
- Ebihara, T.; Endo, R.; Ma, X.; Ishiguro, N.; Kikuta, H. Detection of Human Metapneumovirus Antigens in Nasopharyngeal Secretions by an Immunofluorescent-Antibody Test. J. Clin. Microbiol. 2005, 43, 1138–1141. [Google Scholar] [CrossRef] [PubMed]
- Falsey, A.R.; Erdman, D.; Anderson, L.J.; Walsh, E.E. Human Metapneumovirus Infections in Young and Elderly Adults. J. Infect. Dis. 2003, 187, 785–790. [Google Scholar] [CrossRef]
- Goyal, S.M.; Chiang, S.-J.; Dar, A.M.; Nagaraja, K.V.; Shaw, D.P.; Halvorson, D.A.; Kapur, V. Isolation of Avian Pneumovirus from an Outbreak of Respiratory Illness in Minnesota Turkeys. J. Veter- Diagn. Investig. 2000, 12, 166–168. [Google Scholar] [CrossRef]
- Buys SB dPJ, Els HJ. The isolation and attenuation of a virus causing rhinotracheitis in turkeys in South Africa. Onderstepoort J Vet Res. 1989;56(2):87-98.
- HJ S, MK N, B M, DA H, KV N. Avian pneumovirus (APV) RNA from wild and sentinel birds in the United States has genetic homology with RNA from APV isolates from domestic turkeys - PubMed. Journal of clinical microbiology. 2000 Nov;38(11).
- JK C, S K, MM E. In vitro and in vivo studies in chickens and turkeys on strains of turkey rhinotracheitis virus isolated from the two species - PubMed. Avian pathology : journal of the WVPA. 1993 Mar;22(1).
- Tollefson, S.J.; Cox, R.G.; Williams, J.V. Studies of culture conditions and environmental stability of human metapneumovirus. Virus Res. 2010, 151, 54–59. [Google Scholar] [CrossRef]
- Jeong, S.; Park, M.-J.; Song, W.; Kim, H.-S. Advances in laboratory assays for detecting human metapneumovirus. Ann. Transl. Med. 2020, 8, 608–608. [Google Scholar] [CrossRef]
- Lemaitre, E.; Bougeard, S.; Allée, C.; Eterradossi, N.; Courtillon, C.; Brown, P.A. Avian metapneumovirus: A five-plex digital droplet RT-PCR method for identification of subgroups A, B, C, and D. Front. Veter- Sci. 2022, 9, 1058294. [Google Scholar] [CrossRef]
- Leong, N.K.C.; Gu, H.; Ng, D.Y.M.; Chang, L.D.J.; Krishnan, P.; Cheng, S.S.M.; Peiris, M.; Poon, L.L.M. Development of multiplex RT-ddPCR assays for detection of SARS-CoV-2 and other common respiratory virus infections. Influ. Other Respir. Viruses 2022, 17. [Google Scholar] [CrossRef]
- Sugimoto, S.; Kawase, M.; Suwa, R.; Kakizaki, M.; Kume, Y.; Chishiki, M.; Ono, T.; Okabe, H.; Norito, S.; Hosoya, M.; et al. Development of a duplex real-time RT-PCR assay for the detection and identification of two subgroups of human metapneumovirus in a single tube. J. Virol. Methods 2023, 322, 114812. [Google Scholar] [CrossRef]
- Tulloch, R.L.; Kok, J.; Carter, I.; Dwyer, D.E.; Eden, J.-S. An Amplicon-Based Approach for the Whole-Genome Sequencing of Human Metapneumovirus. Viruses 2021, 13, 499. [Google Scholar] [CrossRef] [PubMed]
- Cho, A.Y.; Kim, T.-H.; Lee, S.-H.; Lee, H.; Choi, Y.-J.; Seo, Y.-R.; Lee, D.-H.; Hyeon, J.-Y.; Song, C.-S. Whole genome sequencing of Avian metapneumovirus type B genomes directly from clinical samples collected from chickens in live bird markets using multiplex tiling RT-PCR method. Front. Veter- Sci. 2023, 10, 1112552. [Google Scholar] [CrossRef] [PubMed]
- Leung EC-m, Chow VC-y, Lee MK-p, Tang KP-s, Li DK-c, Lai RW-m. Evaluation of the Xpert Xpress SARS-CoV-2/Flu/RSV Assay for Simultaneous Detection of SARS-CoV-2, Influenza A and B Viruses, and Respiratory Syncytial Virus in Nasopharyngeal Specimens. Journal of Clinical Microbiology. 2021 Mar 19;59(4).
- Tulloch, R.L.; Kok, J.; Carter, I.; Dwyer, D.E.; Eden, J.-S. An Amplicon-Based Approach for the Whole-Genome Sequencing of Human Metapneumovirus. Viruses 2021, 13, 499. [Google Scholar] [CrossRef]
- Gulati, B.R.; Cameron, K.T.; Seal, B.S.; Goyal, S.M.; Halvorson, D.A.; Njenga, M.K. Development of a Highly Sensitive and Specific Enzyme-Linked Immunosorbent Assay Based on Recombinant Matrix Protein for Detection of Avian Pneumovirus Antibodies. J. Clin. Microbiol. 2000, 38, 4010–4014. [Google Scholar] [CrossRef]
- Edson RK, editor Experience with Avian Pneumoviruses. Proceedings of the 101st Annual Meeting of the United States Animal Health Association, Transmissible Diseases of Poultry Meeting; -24, 1997; Louisville, Kentucky. 18 October.
- Shin, H.J.; Rajashekara, G.; Jirjis, F.F.; Shaw, D.P.; Goyal, S.M.; Halvorson, D.A.; Nagaraja, K.V. Specific detection of avian pneumovirus (APV) US isolates by RT-PCR. Arch. Virol. 2000, 145, 1239–1246. [Google Scholar] [CrossRef]
- FF J, SL N, DA H, KV N, EL T, SM G, et al. Rapid detection of avian pneumovirus in tissue culture by microindirect immunofluorescence test - PubMed. Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc. 2002 Mar;14(2).
- Maherchandani, S.; Patnayak, D.P.; Muñoz-Zanzi, C.A.; Lauer, D.; Goyal, S.M. Evaluation of Five Different Antigens in Enzyme-Linked Immunosorbent Assay for the Detection of Avian Pneumovirus Antibodies. J. Veter- Diagn. Investig. 2005, 17, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Kahn, JS. Epidemiology of Human Metapneumovirus. Clinical Microbiology Reviews. 2006 Jul;19(3).
- Kim, H.W.; Canchola, J.G.; Brandt, C.D.; Pyles, G.; Chanock, R.M.; Jensen, K.; Parrott, R.H. RESPIRATORY SYNCYTIAL VIRUS DISEASE IN INFANTS DESPITE PRIOR ADMINISTRATION OF ANTIGENIC INACTIVATED VACCINE. Am. J. Epidemiol. 1969, 89, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Kampmann, B.; Madhi, S.A.; Munjal, I.; Simões, E.A.; Pahud, B.A.; Llapur, C.; Baker, J.; Marc, G.P.; Radley, D.; Shittu, E.; et al. Bivalent Prefusion F Vaccine in Pregnancy to Prevent RSV Illness in Infants. New Engl. J. Med. 2023, 388, 1451–1464. [Google Scholar] [CrossRef]
- Wen, X.; Mousa, J.J.; Bates, J.T.; Lamb, R.A.; Crowe, J.E., Jr.; Jardetzky, T.S. Structural basis for antibody cross-neutralization of respiratory syncytial virus and human metapneumovirus. Nat. Microbiol. 2017, 2, 16272. [Google Scholar] [CrossRef]
- Rappazzo, C.G.; Hsieh, C.-L.; Rush, S.A.; Esterman, E.S.; Delgado, T.; Geoghegan, J.C.; Wec, A.Z.; Sakharkar, M.; Más, V.; McLellan, J.S.; et al. Potently neutralizing and protective anti-human metapneumovirus antibodies target diverse sites on the fusion glycoprotein. Immunity 2022, 55, 1710–1724.e8. [Google Scholar] [CrossRef]
- Banerjee, A.; Huang, J.; Rush, S.A.; Murray, J.; Gingerich, A.D.; Royer, F.; Hsieh, C.-L.; Tripp, R.A.; McLellan, J.S.; Mousa, J.J. Structural basis for ultrapotent antibody-mediated neutralization of human metapneumovirus. Proc. Natl. Acad. Sci. 2022, 119. [Google Scholar] [CrossRef]
- Cox, R.G.; Erickson, J.J.; Hastings, A.K.; Becker, J.C.; Johnson, M.; Craven, R.E.; Tollefson, S.J.; Boyd, K.L.; Williams, J.V. Human Metapneumovirus Virus-Like Particles Induce Protective B and T Cell Responses in a Mouse Model. J. Virol. 2014, 88, 6368–6379. [Google Scholar] [CrossRef]
- Hsieh, C.-L.; Rush, S.A.; Palomo, C.; Chou, C.-W.; Pickens, W.; Más, V.; McLellan, J.S. Structure-based design of prefusion-stabilized human metapneumovirus fusion proteins. Nat. Commun. 2022, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Phung, E.; Chang, L.A.; Mukhamedova, M.; Yang, L.; Nair, D.; Rush, S.A.; Morabito, K.M.; McLellan, J.S.; Buchholz, U.J.; Mascola, J.R.; et al. Elicitation of pneumovirus-specific B cell responses by a prefusion-stabilized respiratory syncytial virus F subunit vaccine. Sci. Transl. Med. 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Supto MSM, Shanto MRH, Tanoy NM, Fahim MFA, Hasan M, Mia MM, et al. Next-generation multi-epitope subunit vaccine design: A computational approach utilizing two stable proteins to combat Human Metapneumovirus (HMPV). Computers in Biology and Medicine. 2025/09/01;196.
- Aerts, L.; Rhéaume, C.; Carbonneau, J.; Lavigne, S.; Couture, C.; Hamelin, M.; Boivin, G. Adjuvant effect of the human metapneumovirus (HMPV) matrix protein in HMPV subunit vaccines. J. Gen. Virol. 2015, 96, 767–774. [Google Scholar] [CrossRef]
- Fu, X. Current landscape and challenges in adjuvant and antigen delivery systems for vaccine. Vaccine: X 2025, 27. [Google Scholar] [CrossRef]
- Chaudhary, N.; Weissman, D.; Whitehead, K.A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 2021, 20, 817–838. [Google Scholar] [CrossRef] [PubMed]
- Schnyder Ghamloush S, Essink B, Hu B, Kalidindi S, Morsy L, Egwuenu-Dumbuya C, et al. Safety and Immunogenicity of an mRNA-Based hMPV/PIV3 Combination Vaccine in Seropositive Children. Pediatrics. 2024/06/01;153(6).
- Herfst, S.; De Graaf, M.; Schrauwen, E.J.A.; Sprong, L.; Hussain, K.; van den Hoogen, B.G.; Osterhaus, A.; Fouchier, R.A.M. Generation of temperature-sensitive human metapneumovirus strains that provide protective immunity in hamsters. J. Gen. Virol. 2008, 89, 1553–1562. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, Y.; Zhang, X.; Cai, H.; Niewiesk, S.; Li, J. Rational Design of Human Metapneumovirus Live Attenuated Vaccine Candidates by Inhibiting Viral mRNA Cap Methyltransferase. J. Virol. 2014, 88, 11411–11429. [Google Scholar] [CrossRef]
- Dubois, J.; Pizzorno, A.; Cavanagh, M.-H.; Padey, B.; de Lamballerie, C.N.; Uyar, O.; Venable, M.-C.; Carbonneau, J.; Traversier, A.; Julien, T.; et al. Strain-Dependent Impact of G and SH Deletions Provide New Insights for Live-Attenuated HMPV Vaccine Development. Vaccines 2019, 7, 164. [Google Scholar] [CrossRef]
- Liu, P.; Shu, Z.; Qin, X.; Dou, Y.; Zhao, Y.; Zhao, X. A Live Attenuated Human Metapneumovirus Vaccine Strain Provides Complete Protection against Homologous Viral Infection and Cross-Protection against Heterologous Viral Infection in BALB/c Mice. Clin. Vaccine Immunol. 2013, 20, 1246–1254. [Google Scholar] [CrossRef]
- Ogonczyk-Makowska, D.; Brun, P.; Vacher, C.; Chupin, C.; Droillard, C.; Carbonneau, J.; Laurent, E.; Dulière, V.; Traversier, A.; Terrier, O.; et al. Mucosal bivalent live attenuated vaccine protects against human metapneumovirus and respiratory syncytial virus in mice. npj Vaccines 2024, 9, 1–16. [Google Scholar] [CrossRef]
- Zhou, M.; Xiao, H.; Yang, X.; Cheng, T.; Yuan, L.; Xia, N. Novel vaccine strategies to induce respiratory mucosal immunity: advances and implications. Medcomm 2025, 6, e70056. [Google Scholar] [CrossRef]
- Chupin C, Pizzorno A, Traversier A, Brun P, Ogonczyk-Makowska D, Padey B, et al. A novel effective live-attenuated human metapneumovirus vaccine candidate produced in the serum-free suspension DuckCelt®-T17 cell platform. bioRxiv. 2021-08-31.
- Kelly, M.S.; Cunningham, C.K.; McFarland, E.J.; Giganti, M.J.; Lindsey, J.C.; Perlowski, C.; Libous, J.L.; Jean-Philippe, P.; Moye, J.; A Karron, R.; et al. Infectivity and Immunogenicity of Live-Attenuated Respiratory Syncytial Virus Vaccines in Human Immunodeficiency Virus–Exposed Uninfected Children. Open Forum Infect. Dis. 2024, 11, ofae679. [Google Scholar] [CrossRef]
- Anderson, L.; Dormitzer, P.; Nokes, D.; Rappuoli, R.; Roca, A.; Graham, B. Strategic priorities for respiratory syncytial virus (RSV) vaccine development. Vaccine 2013, 31, B209–B215. [Google Scholar] [CrossRef]
- JK C, MB H, MA W, SJ O, AP M. Protection provided by a commercially available vaccine against different strains of turkey rhinotracheitis virus - PubMed. The Veterinary record. 04/15/1995;136(15).
- Ganapathy, K.; Bufton, A.; Pearson, A.; Lemiere, S.; Jones, R.C. Vaccination of commercial broiler chicks against avian metapneumovirus infection: a comparison of drinking-water, spray and oculo-oral delivery methods. Vaccine 2010, 28, 3944–3948. [Google Scholar] [CrossRef] [PubMed]
- Youn, H.-N.; Noh, J.-Y.; Kim, M.-S.; Ju, H.-S.; Park, D.-H.; Lee, D.-Y.; Kim, K.-J.; Go, S.-H.; Song, C.-S. Efficacy of a novel avian metapneumovirus live vaccine candidate based on vaccination route and age. Poult. Sci. 2021, 100, 100528. [Google Scholar] [CrossRef] [PubMed]
- Lupini, C.; Legnardi, M.; Graziosi, G.; Cecchinato, M.; Listorti, V.; Terregino, C.; Catelli, E. Vaccine Interaction and Protection against Virulent Avian Metapneumovirus (aMPV) Challenge after Combined Administration of Newcastle Disease and aMPV Live Vaccines to Day-Old Turkeys. Vaccines 2023, 11, 708. [Google Scholar] [CrossRef] [PubMed]
- Awad, F.; Forrester, A.; Baylis, M.; Lemiere, S.; Jones, R.; Ganapathy, K. Immune responses and interactions following simultaneous application of live Newcastle disease, infectious bronchitis and avian metapneumovirus vaccines in specific-pathogen-free chicks. Res. Veter- Sci. 2015, 98, 127–133. [Google Scholar] [CrossRef]
- Laconi, A.; Catelli, E.; Cecchinato, M.; Naylor, C.J. Two similar commercial live attenuated AMPV vaccines prepared by random passage of the identical field isolate, have unrelated sequences. Vaccine 2019, 37, 2765–2767. [Google Scholar] [CrossRef] [PubMed]
- Naylor, C.; Jones, R. Demonstration of a virulent subpopulation in a prototype live attenuated turkey rhinotracheitis vaccine. Vaccine 1994, 12, 1225–1230. [Google Scholar] [CrossRef]
- Catelli, E.; Cecchinato, M.; Savage, C.E.; Jones, R.C.; Naylor, C.J. Demonstration of loss of attenuation and extended field persistence of a live avian metapneumovirus vaccine. Vaccine 2006, 24, 6476–6482. [Google Scholar] [CrossRef] [PubMed]
- Cecchinato, M.; Catelli, E.; Lupini, C.; Ricchizzi, E.; Prosperi, S.; Naylor, C. Reversion to virulence of a subtype B avian metapneumovirus vaccine: Is it time for regulators to require availability of vaccine progenitors? Vaccine 2014, 32, 4660–4664. [Google Scholar] [CrossRef] [PubMed]
- Franzo, G.; Naylor, C.; Drigo, M.; Croville, G.; Ducatez, M.; Catelli, E.; Laconi, A.; Cecchinato, M. Subpopulations in aMPV vaccines are unlikely to be the only cause of reversion to virulence. Vaccine 2015, 33, 2438–2441. [Google Scholar] [CrossRef]
- Lupini, C.; Cecchinato, M.; Ricchizzi, E.; Naylor, C.J.; Catelli, E. A turkey rhinotracheitis outbreak caused by the environmental spread of a vaccine-derived avian metapneumovirus. Avian Pathol. 2011, 40, 525–530. [Google Scholar] [CrossRef]
- Kowalczyk, J.; Śmiałek, M.; Tykałowski, B.; Dziewulska, D.; Stenzel, T.; Koncicki, A. Field evaluation of maternal antibody transfer from breeder turkey hens to egg yolks, egg whites, and poults. Poult. Sci. 2019, 98, 3150–3157. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
