This study investigates the behaviour of Compressed Earth Cylinders (CECs) and Compressed Earth Blocks (CEBs) during direct compression tests and examines the influence of aspect ratio and the effects of platen restraint. The experimental investigation utilises two soil types and examines the impact of jute fibre reinforcement on the failure mechanism of CECs with aspect ratios ranging from 0.50 to 2.00. Through experimental analysis and numerical modelling, the effects of platen restraint are examined, and a novel hypothesis of intersecting cones is presented. The results show that specimens with a lower aspect ratio exhibited higher compressive strength due to confinement caused by platen restraint. Moreover, this research has derived new aspect ratio correction factors which enable conversion from Apparent Compressive Strength (ACS) to Unconfined Compressive Strength (UCS) of unstabilised and fibre-reinforced CECs. A theoretical relationship between CECs and CEBs was also determined, with an accuracy of 2.7 %. The outcome of this research recommends a standard approach to the application of aspect ratio correction factors when interpreting and reporting the compressive strength of CECs and CEBs.