Submitted:
01 December 2025
Posted:
03 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2.2. Materials and Methods
3. Results
3.1. Elastic Energy Density Analysis
3.2. Strain Energy Density Analysis
3.3. Mathematical Model for Estimating Es

3.4. Results Discussion
4. Conclusions
References
- Pan, S.; Wang, T.; Jin, K.; Cai, X. Understanding and designing metal matrix nanocomposites with high electrical conductivity: A review. J. Mater. Sci. 2022, 57, 6487–6523. [Google Scholar] [CrossRef]
- Prosviryakov, A.S.; Bazlov, A.I.; Churyumov, A.Y.; Mikhaylovskaya, A.V. A Study on the Influence of Zr on the Strengthening of the Al-10% Al₂O₃ Composite Obtained by Mechanical Alloying. Metals 2023, 13, 2008. [Google Scholar] [CrossRef]
- Almotairy, S.M.; Alharthi, N.H.; Abdo, H.S. Regulating Mechanical Properties of Al/SiC by Utilizing Different Ball Milling Speeds. Crystals 2020, 10, 332. [Google Scholar] [CrossRef]
- Sun, L.; Gibson, R.F.; Gordaninejad, F.; Suhr, J. Energy absorption capability of nanocomposites: A review. Compos. Sci. Technol. 2009, 69, 2392–2409. [Google Scholar] [CrossRef]
- Tan, Z.H.; Pang, B.J.; Qin, D.T.; Shi, J.Y.; Gai, B.Z. The compressive properties of 2024Al matrix composites reinforced with high content SiC particles at various strain rates. Mater. Sci. Eng. A 2008, 489, 302–309. [Google Scholar] [CrossRef]
- Seo, H.Y.; Jiang, L.R.; Kang, C.G.; Jin, C.K. Effect of Compression Process of MWCNT-Reinforced Al6061 Powder on Densification Characteristics and Its Mechanical Properties. Metals 2017, 7, 437. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, J.; Zhao, C.; Yun, K.; Qi, L. Enhanced strength and toughness of carbon fiber reinforced aluminum matrix composite prepared via novel indirect extrusion method. J. Alloys Compd. 2024, 176013. [Google Scholar] [CrossRef]
- Edosa, O.O.; Tekweme, F.K.; Olubambi, P.A.; Gupta, K. Microstructural Analysis, Compressive Strength, and Wear Properties of Spark-Plasma-Sintered Al–Mg–PPA Composites. Quantum Beam Sci. 2024, 8, 32. [Google Scholar] [CrossRef]
- Clouet, E. Elastic energy of a straight dislocation and contribution from core tractions. Philosophical Magazine 2009, 89, 1565–1584. [Google Scholar] [CrossRef]
- Akhlaghi, M.; Meka, S.R.; Jägle, E.A.; Kurz, S.J.B.; Bischoff, E.; Mittemeijer, E.J. Formation Mechanisms of Alloying Element Nitrides in Recrystallized and Deformed Ferritic Fe–Cr–Al Alloy. Metallurgical and Materials Transactions A 2016, 47, 4578–4593. [Google Scholar] [CrossRef]
- Bailey, J.E.; Hirsch, P.B. The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philosophical Magazine 1960, 5, 485–497. [Google Scholar] [CrossRef]
- Hull, D.; Bacon, D.J. Introduction to Dislocations, 5th ed.; Butterworth-Heinemann, an imprint of Elsevier: Oxford, UK, 2011; Chap. 9, “Plastic Deformation, Recovery and Recrystallization”, Sect. 9.1. https://www.academia.edu/33899552/Introduction_to_Dislocations. [Google Scholar]
- Ribárik, G.; Jóni, B.; Ungár, T. The Convolutional Multiple Whole Profile (CMWP) fitting method, a global optimiza-tion procedure for microstructure determination. Crystals 2020, 10, 623. [Google Scholar] [CrossRef]
- Sendrowicz, A.; Myhre, A.O.; Yasnikov, I.S.; Vinogradov, A. Stored and dissipated energy of plastic deformation revisited from the viewpoint of dislocation kinetics modelling approach. Acta Materialia 2022, 237, 118190. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Sheng, H.W.; Lu, K. Microstructure evolution and thermal properties in nanocrystalline Fe during me-chanical attrition. Acta Materialia 2001, 49, 365–375. [Google Scholar] [CrossRef]
- Frey, M.R.; Williams, S.L.; Srubar, W.V., III; Torres-Machi, C. Characterization and Evaluation of Agar as a Bio-Based Asphalt Binder Alternative. Infrastructures 2025, 10, 223. [Google Scholar] [CrossRef]
- Zhang, Z.; Ódor, É.; Farkas, D.; Jóni, B.; Ribárik, G.; Tichy, G.; Nandam, S.-H.; Ivanisenko, J.; Preuss, M.; Ungár, T. Dislocations in Grain Boundary Regions: The Origin of Heterogeneous Microstrains in Nanocrystalline Materials. Metall. Mater. Trans. A 2020, 51A, 513–527. [Google Scholar] [CrossRef]
- Martínez-García, J.; Leoni, M.; Scardi, P. A General Approach for Determining the Diffraction Contrast Factor of Straight-Line Dislocations. Acta Cryst. A 2009, 65, 109–119. [Google Scholar] [CrossRef]
- Ungár, T.; Dragomir, I.; Révész, Á.; Borbély, A. The Contrast Factors of Dislocations in Cubic Crystals: The Disloca-tion Model of Strain Anisotropy in Practice. J. Appl. Cryst. 1999, 32, 992–1002. [Google Scholar] [CrossRef]
- Wilkens, M. Theoretical Aspects of Kinematical X-ray Diffraction Profiles from Crystals Containing Dislocation Ensembles. Phys. Status Solidi A 1970, 2, 359–370. [Google Scholar] [CrossRef]
- ASTM International. Standard test methods of compression testing of metallica materials at room temperature, ASTM Standard E9-092009.
- Santos Beltrán, A.; Gallegos Orozco, V.; Santos Beltrán, M.; Medrano Prieto, H.; Estrada Guel, I.; Gallegos Orozco, C.; Martínez Sánchez, R. Time-Dependent Evolution of Al–Al₄C₃ Composite Microstructure and Hardness during the Sintering Process. Materials 2024, 17, 4818. [Google Scholar] [CrossRef]
- Anderson, P.M.; Hirth, J.P.; Lothe, J. Theory of Dislocations, 3rd ed.; Cambridge University Press: Cambridge, 2017. [Google Scholar]
- Meyers, M.A.; Chawla, K.K. Mechanical Behavior of Materials, 2nd ed.; Cambridge University Press: Cambridge, 2009. [Google Scholar] [CrossRef]
- Courtney, T.H. Mechanical Behavior of Materials, 2nd ed.; Waveland Press: Long Grove, IL, 2000. [Google Scholar]
- Srinivasan, S.G.; Liao, X.Z.; Baskes, M.I.; McCabe, R.J.; Zhao, Y.H.; Zhu, Y.T. Compact and Dissociated Disloca-tions in Aluminum: Implications for Deformation. Phys. Rev. Lett. 2005, 94, 155502. [Google Scholar] [CrossRef]
- Gilman, J.J. Influence of Dislocation Dipoles on Physical Properties. Discussions of the Faraday Society 1964, 38, 123–130. [Google Scholar] [CrossRef]
- Christian, J.W.; Vítek, V. Dislocations and stacking faults. Reports on Progress in Physics. 1970, 33, 307. [Google Scholar] [CrossRef]
- Yildirim, C.; Poulsen, H.F.; Winther, G.; Detlefs, C.; Huang, P.H.; Dresselhaus-Marais, L.E. Extensive 3D Mapping of Dislocation Structures in Bulk Aluminum. Sci. Rep. 2023, 13, 3834. [Google Scholar] [CrossRef] [PubMed]
- Hennig, G.R. Screw Dislocations in Graphite. Science. 1965, 147, 733–734. [Google Scholar] [CrossRef] [PubMed]
- Mardix, S.; Kalman, Z.H.; Steinberger, I.T. Periodic Slip Process in Zinc Sulfide Crystals. Journal of Applied Physics 1968, 39, 734–739. [Google Scholar]
- Reiche, M.; Kittler, M. Electronic and Optical Properties of Dislocations in Silicon. Crystals 2016, 6, 74. [Google Scholar] [CrossRef]
- Ahmad, S.I.; Zekri, A.; Youssef, K.M. The role of twinning and stacking fault-induced plasticity on the mechanical properties of aluminum-lithium-graphene nanocomposites. Nanocomposites 2024, 10, 91–107. [Google Scholar] [CrossRef]
- Pawlyta, M. Transmission electron microscope studies on carbon nanostructured materials. Archives of Materials Science and Engineering 2013, 63, 58–67. [Google Scholar]










| Nomenclature | Al (wt. %) | R, mixture powder (wt. %) |
Sintering time (h) |
|---|---|---|---|
| Al-30 | 99 | 3 | 0 |
| Al-32 | 99 | 3 | 2 |
| Al-34 | 99 | 3 | 4 |
| A-36 | 99 | 3 | 6 |
| Composition | Dislocations (1014 m-2) | q | Dislocation character | A | M |
Re (nm) |
Elastic energy density, Ee (MJ m-3) |
| Al-12 | 4.75* | 1.56* | Screw | 0.079 | 0.343* | 20.02* | 0.311 |
| Al-14 | 2.9* | 1.11* | Mixture | 0.099 | 0.443* | 20.33* | 0.502 |
| A1-16 | 1.8* | 1.58* | Screw | 0.079 | 1.37* | 102.38* | 0.240 |
| Al-22 | 4.6* | 1.55* | Screw | 0.079 | 0.312* | 14.50* | 0.464 |
| AL24 | 4.16* | 1.03* | Mixture | 0.099 | 0.34* | 16.81* | 0.428 |
| AL26 | 3.87* | 1.29* | Screw | 0.079 | 0.38* | 19.72* | 0.408 |
| Al-32 | 22.63 | 0.89 | Mixture | 0.099 | 0.5 | 10.52 | 2.147 |
| Al-34 | 21.30 | 0.38 | Edge | 0.118 | 0.29 | 6.49 | 3.077 |
| Al-36 | 27.60 | 1.51 | Screw | 0.079 | 0.188 | 3.58 | 2.115 |
| Composition | Proportional stress σp (Mpa) | Std. Dev. | Proportional Strain, εp | Strain energy density, Es (MJ m-3) |
Std. Dev. |
|---|---|---|---|---|---|
| Al-12 | 131.45 | 23.99 | 1.116 | 3.70 | 0.71 |
| Al-14 | 117.82 | 0.99 | 1.56 | 1.44 | 0.08 |
| A1-16 | 177.14 | 28.51 | 1.58* | 5.32 | 0.69 |
| Al-22 | 97.99 | 9.40 | 1.55* | 1.27 | 0.11 |
| AL24 | 180.33 | 18.16 | 1.03* | 5.37 | 0.48 |
| AL26 | 73.06 | 5.25 | 1.29* | 1.00 | 0.11 |
| Al-32 | 214.83 | 79.83 | 0.89 | 7.39 | 0.13 |
| Al-34 | 297.77 | 55.14 | 0.38 | 8.72 | 1.64 |
| Al-36 | 326.35 | 14.00 | 1.51 | 10.04 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
