Submitted:
01 December 2025
Posted:
02 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Brief Overview of Pediatric Interstitial Lung Diseases (ILDs)
1.2. Epidemiology and Clinical Relevance
1.3. Importance of Genetics in Pediatric ILDs
1.4. Rationale and Scope of the Narrative Review
2. Genetic Basis of Pediatric ILDs
2.1. Isolated chILDs
2.1.1. Genes Associated with Surfactant-Related Disorders
2.1.2. Genes Associated with GM-CSF Receptor–Related Disorders
2.1.3. Genes Linked to Disorders of Epithelial Stress Response, Autophagy, and Lysosomal Function
2.2. Syndromic chILDs
2.2.1. Genes Associated with Telomere Maintenance Disorders
2.2.2. Genes Implicated in Immune Function and Interferon Signaling
2.2.3. Genes Involved in Cytoskeletal Organization and Structural Integrity
2.2.4. Genes Implicated in Embryonic Lung Development and Transcriptional Regulation
2.2.5. Genes Involved in Protein Synthesis and tRNA-Charging Processes
2.2.6. Additional Genes Associated with Fibrosing Multisystem Syndromes Include
2.2.7. Copy Number Variations (CNVs)
3. Diagnostic Clues
3.1. Typical Clinical Presentation in Infancy and Childhood
3.2. Challenges in Diagnosis and Differential Diagnosis
3.3. Radiography
3.4. Computed Tomography
3.5. Histology
- -
- Neuroendocrine cell hyperplasia of infancy (NEHI): inconspicuous architecture of septa, interstitium, and vessels, with an increased number of neuroendocrine cells in ≥ 70% of bronchi, often confirmed by bombesin-positive immunostaining, typically in otherwise normal pulmonary parenchyma.
- -
- Developmental disorders (CAD/AD): pattern resembling canalicular or saccular lung development. Congenital alveolar dysplasia (CAD) shows enlarged, heavy lung with diffuse alveolar simplification, widened septa, reduced capillary density, and predominance of type II pneumocytes. Acinar dysplasia (AD) reflects a more severe maturation arrest at the pseudo-glandular or early canalicular phase, with a complete absence of acini and alveoli.
- -
- Chronic neonatal lung disease, chromosomal abnormalities, or pulmonary hypoplasia: enlarged alveoli with reduced in numbers without increased cellularity
- -
- Pulmonary interstitial glycogenosis (PIG): a non-inflammatory interstitial disorder of infancy; diffuse or focal widening of alveolar septa with PAS-positive, glycogen-rich ovoid cells, preserving the alveolar epithelium.
- -
- Alveolocapillary dysplasia with misalignment of pulmonary veins (ACD/MPV): typically presented with severe neonatal respiratory distress; centrally located septal capillaries, distended peribronchial veins, small arterial media hyperplasia, and lymphatic ectasia
- -
- Chronic pneumonitis of infancy (CPI): type II pneumocyte hyperplasia with interstitial edema and focal lymphoid infiltrates; similar patterns may also be observed in surfactant dysfunction, viral infections, or immunodeficiency.
- -
- Lymphocytic interstitial pneumonia (LIP): dense lymphocytic infiltrate with fibrosis and lymphoid aggregates, often associated with autoimmune diseases or immunodeficiency syndromes.
- -
- Nonspecific interstitial pneumonia (NSIP): less dense inflammatory infiltrates with fibrosis and septal thickening, potentially associated with surfactant dysfunction, autoimmune disease, or hypersensitivity pneumonitis.
- -
- Pulmonary alveolar proteinosis (PAP): intra-alveolar accumulation of eosinophilic, granular, cell-poor material containing cholesterol clefts and foamy macrophages, with type II pneumocyte hyperplasia and an otherwise unremarkable interstitium,
- -
- Desquamative interstitial pneumonia (DIP): alveoli filled with foamy macrophages, often linked to surfactant dysfunction, drug reactions, or toxic inhalation.
- -
- Obliterative bronchiolitis: fibrous remodeling and obliteration of distal airways; may result from post-infectious injury, chronic lung allograft dysfunction, or graft-versus-host disease.
- -
- Follicular bronchiolitis/bronchitis: nodular lymphoid infiltrates within bronchiolar walls, often seen in autoimmune disease or common variable immunodeficiency.
- -
- Granulomatous inflammation: variably distribution, with or without necrosis, suggests infection, sarcoidosis, hypersensitivity pneumonitis, vasculitis, or immunodeficiency.
- -
- Surfactant dysfunction disorders: type II pneumocyte hyperplasia with PAS-D–positive intra-alveolar material, intra-alveolar macrophages, septal fibrosis, and abnormal lamellar bodies, often associated with SFTPB, SFTPC, or ABCA3 mutations.
3.6. MR Imaging
3.7. Ultrasonography
3.8. Bronchoalveolar Lavage (BAL)
4. Genetic Diagnosis
4.1. Genetic Testing Methodologies
4.2. The Importance of Genetic Counselling in Clinical Practice
5. Therapeutic Implications
5.1. Precision Medicine and Targeted Therapies
5.2. Impact of Genetic Diagnosis on Management Decisions
5.3. Emerging Therapies and Clinical Trials
6. Impact of Genetic Findings on Prognosis
7. Future Directions
7.1. Knowledge Gaps and Ongoing Research
7.2. Potential of Multi-Omics and Gene Editing
7.3. Personalized Medicine in Pediatric ILDs
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| chILDs | Children’s interstitial lung diseases |
| CTD-ILD | Connective tissue disease–associated ILD |
| NEHI | Neuroendocrine cell hyperplasia of infancy |
| DIP | Desquamative interstitial pneumonia |
| NSIP | Non-specific interstitial pneumonia |
| HRCT | High-Resolution Computed Tomography |
| IPF | Idiopathic pulmonary fibrosis |
| VATS | Video-assisted thoracoscopic surgery |
| MDD | Multidisciplinary diagnostic discussions |
| SPC | Pulmonary-associated surfactant protein C |
| SPB | Surfactant protein B |
| snoRNP | small nucleolar ribonucleoprotein |
| SAVI | STING-associated vasculopathy with onset in infancy |
| COPI | Coatomer protein complex I |
| GH | Growth hormone |
| GRAF | GTPase Regulator Associated with Focal Adhesion Kinase |
| FINCA | FIbrosis, Neurodegeneration and Cerebral Angiomatosis |
| CNVs | Copy Number Variations |
| PIG | Pulmonary interstitial glycogenosis |
| CT | Computed Tomography |
| VATS | Video-assisted thoracoscopic |
| UIP | Usual interstitial pneumonia |
| NSIP | Nonspecific interstitial pneumonia |
| CAD | Congenital alveolar dysplasia |
| AD | Acinar dysplasia |
| ACD | Alveolocapillary dysplasia |
| MPV | Misalignment of pulmonary veins |
| CPI | Chronic pneumonitis of infancy |
| LIP | Lymphocytic interstitial pneumonia |
| NSIP | Nonspecific interstitial pneumonia |
| PAP | Pulmonary alveolar proteinosis |
| DIP | Desquamative interstitial pneumonia |
| MRI | Magnetic resonance imaging |
| PAS | Periodic acid–Schiff |
| BAL | Bronchoalveolar lavage |
| NGS | Next-generation sequencing |
| WES | Whole-exome sequencing |
| WGS | Whole-genome sequencing |
| CMA | Chromosomal microarray |
| FISH | Fluorescence in situ hybridization |
| CADDS | Contiguous ABCD1/DXS1357E deletion syndrome |
| VUS | Variants of uncertain significance |
| ERS | European Respiratory Society |
| ATS | American Thoracic Society |
References
- Maher, T.M. Interstitial Lung Disease: A Review. JAMA 2024, 331, 1655–1665. [Google Scholar] [CrossRef]
- Cunningham, S.; Jaffe, A.; Young, L.R. Children’s Interstitial and Diffuse Lung Disease. Lancet Child Adolesc. Health 2019, 3, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Nathan, N.; Berdah, L.; Delestrain, C.; Sileo, C.; Clement, A. Interstitial Lung Diseases in Children. Presse Medicale Paris Fr. 1983 2020, 49, 103909. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Michel, K.; Griese, M. Interstitial Lung Disease in Immunocompromised Children. Diagnostics 2022, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Nathan, N.; Berdah, L.; Borensztajn, K.; Clement, A. Chronic Interstitial Lung Diseases in Children: Diagnosis Approaches. Expert Rev. Respir. Med. 2018, 12, 1051–1060. [Google Scholar] [CrossRef]
- Fletcher, C.; Hadchouel, A.; Thumerelle, C.; Mazenq, J.; Fleury, M.; Corvol, H.; Jedidi, N.; Benhamida, M.; Bessaci, K.; Bilhouee, T.; et al. Epidemiology of Childhood Interstitial Lung Disease in France: The RespiRare Cohort. Thorax 2024, 79, 842–852. [Google Scholar] [CrossRef]
- Laenger, F.P.; Schwerk, N.; Dingemann, J.; Welte, T.; Auber, B.; Verleden, S.; Ackermann, M.; Mentzer, S.J.; Griese, M.; Jonigk, D. Interstitial Lung Disease in Infancy and Early Childhood: A Clinicopathological Primer. Eur. Respir. Rev. Off. J. Eur. Respir. Soc. 2022, 31, 210251. [Google Scholar] [CrossRef]
- Borie, R.; Kannengiesser, C.; Gouya, L.; Dupin, C.; Amselem, S.; Ba, I.; Bunel, V.; Bonniaud, P.; Bouvry, D.; Cazes, A.; et al. Pilot Experience of Multidisciplinary Team Discussion Dedicated to Inherited Pulmonary Fibrosis. Orphanet J. Rare Dis. 2019, 14, 280. [Google Scholar] [CrossRef]
- Balinotti, J.E.; Mallie, C.; Maffey, A.; Colom, A.; Epaud, R.; de Becdelievre, A.; Fanen, P.; Delestrain, C.; Medín, M.; Teper, A. Inherited Pulmonary Surfactant Metabolism Disorders in Argentina: Differences between Patients with SFTPC and ABCA3 Variants. Pediatr. Pulmonol. 2023, 58, 540–549. [Google Scholar] [CrossRef]
- DeBoer, E.M.; Liptzin, D.R.; Humphries, S.M.; Lynch, D.A.; Robison, K.; Galambos, C.; Dishop, M.K.; Deterding, R.R.; Weinman, J.P. Ground Glass and Fibrotic Change in Children with Surfactant Protein C Dysfunction Mutations. Pediatr. Pulmonol. 2021, 56, 2223–2231. [Google Scholar] [CrossRef]
- Katzen, J.; Wagner, B.D.; Venosa, A.; Kopp, M.; Tomer, Y.; Russo, S.J.; Headen, A.C.; Basil, M.C.; Stark, J.M.; Mulugeta, S.; et al. An SFTPC BRICHOS Mutant Links Epithelial ER Stress and Spontaneous Lung Fibrosis. JCI Insight 2019, 4, e126125. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Zhang, F.; Zheng, G.; Yang, D.; Wu, L.; Jia, X.; Zhu, G.; Tang, L. Clinical Characteristics of SFTPC Gene Mutations in Children: A Single-Center Experience. Ital. J. Pediatr. 2025, 51, 266. [Google Scholar] [CrossRef]
- Honjo, R.; Cho, K.; Hashimoto, K.; Takeda, K.; Seto, Y.; Kaneshi, Y.; Furuse, Y.; Manabe, A. Neonatal-Onset Pulmonary Alveolar Proteinosis Is a Phenotype Associated with Poor Outcomes in Surfactant Protein-C Disorder. Early Hum. Dev. 2024, 189, 105930. [Google Scholar] [CrossRef] [PubMed]
- Wambach, J.A.; Casey, A.M.; Fishman, M.P.; Wegner, D.J.; Wert, S.E.; Cole, F.S.; Hamvas, A.; Nogee, L.M. Genotype-Phenotype Correlations for Infants and Children with ABCA3 Deficiency. Am. J. Respir. Crit. Care Med. 2014, 189, 1538–1543. [Google Scholar] [CrossRef] [PubMed]
- Whitsett, J.A.; Weaver, T.E. Hydrophobic Surfactant Proteins in Lung Function and Disease. N. Engl. J. Med. 2002, 347, 2141–2148. [Google Scholar] [CrossRef]
- Ducrot, L.; Nathan, N.; Benusiglio, P.R.; Borie, R.; Nuel, G.; Legendre, M. Penetrance of Interstitial Lung Disease and Lung Cancer in Carriers of SFTPA1 or SFTPA2 Pathogenic Variants. ERJ Open Res. 2025, 11, 01348–02024. [Google Scholar] [CrossRef]
- Li, Y.; Seidl, E.; Knoflach, K.; Gothe, F.; Forstner, M.E.; Michel, K.; Pawlita, I.; Gesenhues, F.; Sattler, F.; Yang, X.; et al. ABCA3-Related Interstitial Lung Disease beyond Infancy. Thorax 2023, 78, 587–595. [Google Scholar] [CrossRef]
- Kröner, C.; Wittmann, T.; Reu, S.; Teusch, V.; Klemme, M.; Rauch, D.; Hengst, M.; Kappler, M.; Cobanoglu, N.; Sismanlar, T.; et al. Lung Disease Caused by ABCA3 Mutations. Thorax 2017, 72, 213–220. [Google Scholar] [CrossRef]
- Si, X.; Steffes, L.C.; Schymick, J.C.; Hazard, F.K.; Tracy, M.C.; Cornfield, D.N. Three Infants with Pathogenic Variants in the ABCA3 Gene: Presentation, Treatment, and Clinical Course. J. Pediatr. 2021, 231, 278–283.e2. [Google Scholar] [CrossRef]
- Xu, K.K.; Wegner, D.J.; Geurts, L.C.; Heins, H.B.; Yang, P.; Hamvas, A.; Eghtesady, P.; Sweet, S.C.; Sessions Cole, F.; Wambach, J.A. Biologic Characterization of ABCA3 Variants in Lung Tissue from Infants and Children with ABCA3 Deficiency. Pediatr. Pulmonol. 2022, 57, 1325–1330. [Google Scholar] [CrossRef]
- Rappold, G.; Willson, T.A.; Henke, A.; Gough, N.M. Arrangement and Localization of the Human GM-CSF Receptor Alpha Chain Gene CSF2RA within the X-Y Pseudoautosomal Region. Genomics 1992, 14, 455–461. [Google Scholar] [CrossRef]
- Suzuki, T.; Sakagami, T.; Rubin, B.K.; Nogee, L.M.; Wood, R.E.; Zimmerman, S.L.; Smolarek, T.; Dishop, M.K.; Wert, S.E.; Whitsett, J.A.; et al. Familial Pulmonary Alveolar Proteinosis Caused by Mutations in CSF2RA. J. Exp. Med. 2008, 205, 2703–2710. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Maranda, B.; Sakagami, T.; Catellier, P.; Couture, C.-Y.; Carey, B.C.; Chalk, C.; Trapnell, B.C. Hereditary Pulmonary Alveolar Proteinosis Caused by Recessive CSF2RB Mutations. Eur. Respir. J. 2011, 37, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Tongal, S.N.; Kayhan, G.; Yılmaz, Ö.; Öçalan, M.; Yüksel, H. The Role of Pulmonary Genetic Variations in the Pathogenesis of Pediatric Postinfectious Bronchiolitis Obliterans. Thorac. Res. Pract. 2025, 26, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.C.; Vargas, S.O.; Fishman, M.P.; Alesi, N.; Baek, S.-H.; Khabibillin, D.; Platt, C.D.; Garcia-de-Alba, C.; Agrawal, P.B.; Carmichael, N.E.; et al. A Progranulin Variant Causing Childhood Interstitial Lung Disease Responsive to Anti-TNF-α Biologic Therapy. Med N. Y. N 2025, 6, 100607. [Google Scholar] [CrossRef]
- Chau, A.S.; Cole, B.L.; Debley, J.S.; Nanda, K.; Rosen, A.B.I.; Bamshad, M.J.; Nickerson, D.A.; Torgerson, T.R.; Allenspach, E.J. Heme Oxygenase-1 Deficiency Presenting with Interstitial Lung Disease and Hemophagocytic Flares. Pediatr. Rheumatol. Online J. 2020, 18, 80. [Google Scholar] [CrossRef]
- Louvrier, C.; Desroziers, T.; Soreze, Y.; Delgado Rodriguez, M.; Thomas, L.; Nau, V.; Dastot-Le Moal, F.; Bernstein, J.A.; Cole, F.S.; Damme, M.; et al. Bi-Allelic LAMP3 Variants in Childhood Interstitial Lung Disease: A Surfactant-Related Disease. EBioMedicine 2025, 113, 105626. [Google Scholar] [CrossRef]
- Tummala, H.; Walne, A.; Collopy, L.; Cardoso, S.; de la Fuente, J.; Lawson, S.; Powell, J.; Cooper, N.; Foster, A.; Mohammed, S.; et al. Poly(A)-Specific Ribonuclease Deficiency Impacts Telomere Biology and Causes Dyskeratosis Congenita. J. Clin. Invest. 2015, 125, 2151–2160. [Google Scholar] [CrossRef]
- Dodson, L.M.; Baldan, A.; Nissbeck, M.; Gunja, S.M.R.; Bonnen, P.E.; Aubert, G.; Birchansky, S.; Virtanen, A.; Bertuch, A.A. From Incomplete Penetrance with Normal Telomere Length to Severe Disease and Telomere Shortening in a Family with Monoallelic and Biallelic PARN Pathogenic Variants. Hum. Mutat. 2019, 40, 2414–2429. [Google Scholar] [CrossRef]
- Nagpal, N.; Agarwal, S. Telomerase RNA Processing: Implications for Human Health and Disease. Stem Cells Dayt. Ohio 2020. [Google Scholar] [CrossRef]
- Heidenreich, B.; Rachakonda, P.S.; Hemminki, K.; Kumar, R. TERT Promoter Mutations in Cancer Development. Curr. Opin. Genet. Dev. 2014, 24, 30–37. [Google Scholar] [CrossRef]
- Mangova, M.; Knoflach, K.; Reu-Hofer, S.; Rapp, C.K.; Hirsch, F.; Gräfe, D.; Vom Hove, M.; Emiralioglu, N.; Gürsoy, T.; Ullmann, N.; et al. Telomere gene mutations and associated childhood interstitial lung disease (chILD). Klin. Pädiatr. 2023, 235, 131–132. [Google Scholar] [CrossRef]
- Guérin, C.; Crestani, B.; Dupin, C.; Kawano-Dourado, L.; Ba, I.; Kannengiesser, C.; Borie, R. [Telomeres and lung]. Rev. Mal. Respir. 2022, 39, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Savage, S.A.; Giri, N.; Baerlocher, G.M.; Orr, N.; Lansdorp, P.M.; Alter, B.P. TINF2, a Component of the Shelterin Telomere Protection Complex, Is Mutated in Dyskeratosis Congenita. Am. J. Hum. Genet. 2008, 82, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Walne, A.J.; Vulliamy, T.; Marrone, A.; Beswick, R.; Kirwan, M.; Masunari, Y.; Al-Qurashi, F.; Aljurf, M.; Dokal, I. Genetic Heterogeneity in Autosomal Recessive Dyskeratosis Congenita with One Subtype Due to Mutations in the Telomerase-Associated Protein NOP10. Hum. Mol. Genet. 2007, 16, 1619–1629. [Google Scholar] [CrossRef]
- Kannengiesser, C.; Manali, E.D.; Revy, P.; Callebaut, I.; Ba, I.; Borgel, A.; Oudin, C.; Haritou, A.; Kolilekas, L.; Malagari, K.; et al. First Heterozygous NOP10 Mutation in Familial Pulmonary Fibrosis. Eur. Respir. J. 2020, 55, 1902465. [Google Scholar] [CrossRef]
- Kelich, J.; Aramburu, T.; Van Der Vis, J.J.; Showe, L.; Kossenkov, A.; Van Der Smagt, J.; Massink, M.; Schoemaker, A.; Hennekam, E.; Veltkamp, M.; et al. Telomere Dysfunction Implicates POT1 in Patients with Idiopathic Pulmonary Fibrosis. J. Exp. Med. 2022, 219, e20211681. [Google Scholar] [CrossRef]
- Schratz, K.E.; Flasch, D.A.; Atik, C.C.; Cosner, Z.L.; Blackford, A.L.; Yang, W.; Gable, D.L.; Vellanki, P.J.; Xiang, Z.; Gaysinskaya, V.; et al. T Cell Immune Deficiency Rather than Chromosome Instability Predisposes Patients with Short Telomere Syndromes to Squamous Cancers. Cancer Cell 2023, 41, 807–817.e6. [Google Scholar] [CrossRef]
- Pearson, T.; Curtis, F.; Al--Eyadhy, A.; Al--Tamemi, S.; Mazer, B.; Dror, Y.; Abish, S.; Bale, S.; Compton, J.; Ray, R.; et al. An Intronic Mutation in DKC1 in an Infant with Høyeraal–Hreidarsson Syndrome. Am. J. Med. Genet. A. 2008, 146A, 2159–2161. [Google Scholar] [CrossRef]
- Kang, Z.; Fu, R.; Li, Z.; Zhang, L. Severe Interstitial Lung Disease as the First Manifestation of a STING1 Variant in a Familial Case. Immunol. Res. 2025, 73, 113. [Google Scholar] [CrossRef]
- Liu, Y.; Jesus, A.A.; Marrero, B.; Yang, D.; Ramsey, S.E.; Montealegre Sanchez, G.A.; Tenbrock, K.; Wittkowski, H.; Jones, O.Y.; Kuehn, H.S.; et al. Activated STING in a Vascular and Pulmonary Syndrome. N. Engl. J. Med. 2014, 371, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Li, W.; Zhao, Q.; Zhao, L.; Lv, G.; Sun, G.; Gao, Y.; Ding, Y.; Zhang, Z.; Zhou, L.; et al. A Novel Homozygous Y140X Mutation of ISG15 Causes Diverse Type I Interferonopathies in Sibling Patients with Cutaneous Lesions or Recurrent Parenchymal Pneumonia. Clin. Immunol. 2023, 257, 109844. [Google Scholar] [CrossRef] [PubMed]
- Tsui, J.L.; Estrada, O.A.; Deng, Z.; Wang, K.M.; Law, C.S.; Elicker, B.M.; Jones, K.D.; Dell, S.D.; Gudmundsson, G.; Hansdottir, S.; et al. Analysis of Pulmonary Features and Treatment Approaches in the COPA Syndrome. ERJ Open Res. 2018, 4, 00017–02018. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Mandal, A.; Jat, K.R. Interstitial Lung Disease in an Adolescent Associated With a Novel STAT5B Mutation. Indian Pediatr. 2023, 60, 237–238. [Google Scholar] [CrossRef]
- Cortes-Santiago, N.; Forbes, L.; Vogel, T.P.; Silva-Carmona, M.; Hicks, J.; Guillerman, R.P.; Thatayatikom, A.; Patel, K. Pulmonary Histopathology Findings in Patients With STAT3 Gain of Function Syndrome. Pediatr. Dev. Pathol. 2021, 24, 227–234. [Google Scholar] [CrossRef]
- Sugiura, Y.; Ando, T.; Urushiyama, H.; Mitani, A.; Tanaka, G.; Kashimada, K.; Morio, T.; Kage, H. GATA2 Deficiency With Early--Onset and Progressive Interstitial Lung Disease. Respirol. Case Rep. 2025, 13, e70165. [Google Scholar] [CrossRef]
- Hartl, D.; Griese, M.; Nicolai, T.; Zissel, G.; Prell, C.; Reinhardt, D.; Schendel, D.J.; Krauss-Etschmann, S. A Role for MCP-1/CCR2 in Interstitial Lung Disease in Children. Respir. Res. 2005, 6, 93. [Google Scholar] [CrossRef]
- Herkner, M.; Rapp, C.; Graeber, S.Y.; Marx, C.; Rambuscheck, C.; Reu--Hofer, S.; Emiralioglu, N.; Kiper, N.; Gilea, A.I.; Notaroberto, I.; et al. Multicystic Interstitial Lung Disease Due to a Novel Biallelic C--C Chemokine Receptor Type 2 Variant. Pediatr. Pulmonol. 2025, 60, e71135. [Google Scholar] [CrossRef]
- Matsuyuki, K.; Ide, M.; Houjou, K.; Shima, S.; Tanaka, S.; Watanabe, Y.; Tomino, H.; Egashira, T.; Takayanagi, T.; Tashiro, K.; et al. Novel AP3B1 Mutations in a Hermansky–Pudlak Syndrome Type2 with Neonatal Interstitial Lung Disease. Pediatr. Allergy Immunol. 2022, 33, e13748. [Google Scholar] [CrossRef]
- Hengst, M.; Naehrlich, L.; Mahavadi, P.; Grosse-Onnebrink, J.; Terheggen-Lagro, S.; Skanke, L.H.; Schuch, L.A.; Brasch, F.; Guenther, A.; Reu, S.; et al. Hermansky-Pudlak Syndrome Type 2 Manifests with Fibrosing Lung Disease Early in Childhood. Orphanet J. Rare Dis. 2018, 13, 42. [Google Scholar] [CrossRef]
- Shah, A.S.; Black, E.D.; Simon, D.M.; Gambello, M.J.; Garber, K.B.; Iannucci, G.J.; Riedesel, E.L.; Kasi, A.S. Heterogeneous Pulmonary Phenotypes in Filamin A Mutation-Related Lung Disease. Pediatr. Allergy Immunol. Pulmonol. 2021, 34, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Desnous, B.; Carles, G.; Riccardi, F.; Stremler, N.; Baravalle, M.; El--Louali, F.; Testud, B.; Milh, M. Diffuse Interstitial Lung Disease in a Male Fetus with Periventricular Nodular Heterotopia and Filamin A Mosaic Variant. Prenat. Diagn. 2024, 44, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Cui, L.; Su, J.; Shen, Y. Case Report: Multisystemic Smooth Muscle Dysfunction Syndrome: A Rare Genetic Cause of Infantile Interstitial Lung Disease. Front. Pharmacol. 2025, 15, 1510969. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Tran, K.A.; Gawey, L.; Stokes, M.; Hekmatjah, J.; Kincannon, J. Novel Compound Heterozygous Mutations in ILNEB Syndrome. Australas. J. Dermatol. 2025, 66. [Google Scholar] [CrossRef]
- Li, Q.; Dibus, M.; Casey, A.; Yee, C.S.K.; Vargas, S.O.; Luo, S.; Rosen, S.M.; Madden, J.A.; Genetti, C.A.; Brabek, J.; et al. A Homozygous Stop-Gain Variant in ARHGAP42 Is Associated with Childhood Interstitial Lung Disease, Systemic Hypertension, and Immunological Findings. PLOS Genet. 2021, 17, e1009639. [Google Scholar] [CrossRef]
- Nattes, E.; Lejeune, S.; Carsin, A.; Borie, R.; Gibertini, I.; Balinotti, J.; Nathan, N.; Marchand-Adam, S.; Thumerelle, C.; Fauroux, B.; et al. Heterogeneity of Lung Disease Associated with NK2 Homeobox 1 Mutations. Respir. Med. 2017, 129, 16–23. [Google Scholar] [CrossRef]
- Attarian, S.J.; Leibel, S.L.; Yang, P.; Alfano, D.N.; Hackett, B.P.; Cole, F.S.; Hamvas, A. Mutations in the Thyroid Transcription Factor Gene NKX2-1 Result in Decreased Expression of SFTPB and SFTPC. Pediatr. Res. 2018, 84, 419–425. [Google Scholar] [CrossRef]
- Haarman, M.G.; Kerstjens-Frederikse, W.S.; Berger, R.M.F. TBX4 Variants and Pulmonary Diseases: Getting out of the ‘Box. ’ Curr. Opin. Pulm. Med. 2020, 26, 277–284. [Google Scholar] [CrossRef]
- Flanagan, F.O.; Holtz, A.M.; Vargas, S.O.; Genetti, C.A.; Schmitz-Abe, K.; Casey, A.; Kennedy, J.C.; Raby, B.A.; Mullen, M.P.; Fishman, M.P.; et al. An Intronic Variant in TBX4 in a Single Family with Variable and Severe Pulmonary Manifestations. Npj Genomic Med. 2023, 8, 7. [Google Scholar] [CrossRef]
- Soreze, Y.; Sileo, C.; Coulomb l’Hermine, A.; Legendre, M.; Nathan, N. Interstitial Lung Diseases in the Neonatal Period. In Respiratory Diseases of the Newborn Infant; Sinha, I.P., Bhatt, J.M., Cleator, A., Wallace, H., Eds.; European Respiratory Society, 2021 ISBN 978-1-84984-136-8.
- Hayasaka, I.; Cho, K.; Akimoto, T.; Ikeda, M.; Uzuki, Y.; Yamada, M.; Nakata, K.; Furuta, I.; Ariga, T.; Minakami, H. Genetic Basis for Childhood Interstitial Lung Disease among Japanese Infants and Children. Pediatr. Res. 2018, 83, 477–483. [Google Scholar] [CrossRef]
- Bush, A.; Gilbert, C.; Gregory, J.; Nicholson, A.G.; Semple, T.; Pabary, R. Interstitial Lung Disease in Infancy. Early Hum. Dev. 2020, 150, 105186. [Google Scholar] [CrossRef] [PubMed]
- Schütz, K.; Schmidt, A.; Schwerk, N.; Renz, D.M.; Gerard, B.; Schaefer, E.; Antal, M.C.; Peters, S.; Griese, M.; Rapp, C.K.; et al. Variants in FGF10 Cause Early Onset of Severe Childhood Interstitial Lung Disease: A Detailed Description of Four Affected Children. Pediatr. Pulmonol. 2023, 58, 3095–3105. [Google Scholar] [CrossRef] [PubMed]
- Lomuscio, S.; Cocciadiferro, D.; Petrizzelli, F.; Liorni, N.; Mazza, T.; Allegorico, A.; Ullmann, N.; Novelli, G.; Cutrera, R.; Novelli, A. Two Novel Biallelic Variants in the FARSA Gene: The First Italian Case and a Literature Review. Genes 2024, 15, 1573. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.-J.; Zhu, Y.; Wang, L.-S.; Lu, W.; Yang, L.; Zhu, L. [A case of interstitial lung and liver disease caused by MARS1 gene mutation]. Zhongguo Dang Dai Er Ke Za Zhi Chin. J. Contemp. Pediatr. 2023, 25, 1186–1190. [Google Scholar] [CrossRef]
- Okamoto, N.; Miya, F.; Tsunoda, T.; Kanemura, Y.; Saitoh, S.; Kato, M.; Yanagi, K.; Kaname, T.; Kosaki, K. Four Pedigrees with Aminoacyl-tRNA Synthetase Abnormalities. Neurol. Sci. 2022, 43, 2765–2774. [Google Scholar] [CrossRef]
- Averdunk, L.; Wang, H.; Hoytema van Konijnenburg, E.M.; Fuchs, S.A.; Nasser Samra, N.; Mandel, H.; Kwok, A.M.-K. YARS1 Deficiency. In GeneReviews®; Adam, M.P., Bick, S., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington, Seattle: Seattle (WA), 1993. [Google Scholar]
- Borie, R.; Berteloot, L.; Kannengiesser, C.; Griese, M.; Cazes, A.; Crestani, B.; Hadchouel, A.; Debray, M.P. Rare Genetic Interstitial Lung Diseases: A Pictorial Essay. Eur. Respir. Rev. 2024, 33, 240101. [Google Scholar] [CrossRef]
- Tallgren, A.; Kager, L.; O’Grady, G.; Tuominen, H.; Körkkö, J.; Kuismin, O.; Feucht, M.; Wilson, C.; Behunova, J.; England, E.; et al. Novel Patients with NHLRC2 Variants Expand the Phenotypic Spectrum of FINCA Disease. Front. Neurosci. 2023, 17, 1123327. [Google Scholar] [CrossRef]
- Mercier, S.; Küry, S.; Shaboodien, G.; Houniet, D.T.; Khumalo, N.P.; Bou-Hanna, C.; Bodak, N.; Cormier-Daire, V.; David, A.; Faivre, L.; et al. Mutations in FAM111B Cause Hereditary Fibrosing Poikiloderma with Tendon Contracture, Myopathy, and Pulmonary Fibrosis. Am. J. Hum. Genet. 2013, 93, 1100–1107. [Google Scholar] [CrossRef]
- Nanah, R.; Zblewski, D.; Patnaik, M.S.; Begna, K.; Ketterling, R.; Iyer, V.N.; Hogan, W.J.; Litzow, M.R.; Al-Kali, A. Deletion 5q Is Frequent in Myelodysplastic Syndrome (MDS) Patients Diagnosed with Interstitial Lung Diseases (ILD): Mayo Clinic Experience. Leuk. Res. 2016, 50, 112–115. [Google Scholar] [CrossRef]
- Heath, O.; Pandithan, D.; Pitt, J.; Savva, E.; Raiti, L.; Bracken, J.; Vandeleur, M.; Delatycki, M.B.; Yaplito--Lee, J.; Hardikar, W.; et al. Interstitial Lung Disease and Pancreatic Exocrine Insufficiency in CADDS : Phenotypic Expansion and Literature Review. JIMD Rep. 2023, 64, 337–345. [Google Scholar] [CrossRef]
- Nayir Buyuksahin, H.; Kiper, N. Childhood Interstitial Lung Disease. Pediatr. Allergy Immunol. Pulmonol. 2023, 36, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Giunta-Stibb, H.; Hackett, B. Interstitial Lung Disease in the Newborn. J. Perinatol. Off. J. Calif. Perinat. Assoc. 2025, 45, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Kurland, G.; Deterding, R.R.; Hagood, J.S.; Young, L.R.; Brody, A.S.; Castile, R.G.; Dell, S.; Fan, L.L.; Hamvas, A.; Hilman, B.C.; et al. An Official American Thoracic Society Clinical Practice Guideline: Classification, Evaluation, and Management of Childhood Interstitial Lung Disease in Infancy. Am. J. Respir. Crit. Care Med. 2013, 188, 376–394. [Google Scholar] [CrossRef] [PubMed]
- Semple, T.; Winant, A.J.; Lee, E.Y. Childhood Interstitial Lung Disease. Radiol. Clin. North Am. 2022, 60, 83–111. [Google Scholar] [CrossRef]
- Deterding, R.; Young, L.R.; DeBoer, E.M.; Warburton, D.; Cunningham, S.; Schwerk, N.; Flaherty, K.R.; Brown, K.K.; Dumistracel, M.; Erhardt, E.; et al. Nintedanib in Children and Adolescents with Fibrosing Interstitial Lung Diseases. Eur. Respir. J. 2023, 61, 2201512. [Google Scholar] [CrossRef]
- Samad, A.; Wobma, H.; Casey, A. Innovations in the Care of Childhood Interstitial Lung Disease Associated with Connective Tissue Disease and Immune--mediated Disorders. Pediatr. Pulmonol. 2024, 59, 2321–2337. [Google Scholar] [CrossRef]
- Drobňaková, S.; Vargová, V.; Barkai, L. The Clinical Approach to Interstitial Lung Disease in Childhood: A Narrative Review Article. Children 2024, 11, 904. [Google Scholar] [CrossRef]
- Snyder, M.E.; Anderson, M.R.; Benvenuto, L.J.; Sutton, R.M.; Bondonese, A.; Koshy, R.; Burke, R.; Clifford, S.; Craig, A.; Iasella, C.J.; et al. Impact of Age and Telomere Length on Circulating T Cells and Rejection Risk after Lung Transplantation for Idiopathic Pulmonary Fibrosis. J. Heart Lung Transplant. 2023, 42, 1666–1677. [Google Scholar] [CrossRef]
- Deterding, R.R.; DeBoer, E.M.; Cidon, M.J.; Robinson, T.E.; Warburton, D.; Deutsch, G.H.; Young, L.R. Approaching Clinical Trials in Childhood Interstitial Lung Disease and Pediatric Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2019, 200, 1219–1227. [Google Scholar] [CrossRef]
- Serra, G.; Notarbartolo, V.; Antona, V.; Cacace, C.; Di Pace, M.R.; Morreale, D.M.; Pensabene, M.; Piro, E.; Schierz, I.A.M.; Sergio, M.; et al. Novel Compound Heterozygous Mutation of the ABCA3 Gene in a Patient with Neonatal-Onset Interstitial Lung Disease. J. Clin. Med. 2025, 14, 3704. [Google Scholar] [CrossRef]
- Griese, M.; Kappler, M.; Stehling, F.; Schulze, J.; Baden, W.; Koerner-Rettberg, C.; Carlens, J.; Prenzel, F.; Nährlich, L.; Thalmeier, A.; et al. Randomized Controlled Phase 2 Trial of Hydroxychloroquine in Childhood Interstitial Lung Disease. Orphanet J. Rare Dis. 2022, 17, 289. [Google Scholar] [CrossRef] [PubMed]
- Bush, A.; Cunningham, S.; De Blic, J.; Barbato, A.; Clement, A.; Epaud, R.; Hengst, M.; Kiper, N.; Nicholson, A.G.; Wetzke, M.; et al. European Protocols for the Diagnosis and Initial Treatment of Interstitial Lung Disease in Children. Thorax 2015, 70, 1078–1084. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, M.; De Witt, T.W. An Approach to Diagnosing and Managing Diffuse Lung Disease Presenting in the Newborn Period. South Afr. J. Child Health 2019, 13, 145. [Google Scholar] [CrossRef]
- Nathan, N.; Griese, M.; Michel, K.; Carlens, J.; Gilbert, C.; Emiralioglu, N.; Torrent-Vernetta, A.; Marczak, H.; Willemse, B.; Delestrain, C.; et al. Diagnostic Workup of Childhood Interstitial Lung Disease. Eur. Respir. Rev. Off. J. Eur. Respir. Soc. 2023, 32, 220188. [Google Scholar] [CrossRef]
- Silva-Carmona, M.; Vogel, T.P.; Marchal, S.; Guesmi, M.; Dubus, J.-C.; Leroy, S.; Fabre, A.; Barlogis, V.; Forbes, L.R.; Giovannini-Chami, L. Successful Treatment of Interstitial Lung Disease in STAT3 Gain-of-Function Using JAK Inhibitors. Am. J. Respir. Crit. Care Med. 2020, 202, 893–897. [Google Scholar] [CrossRef]
- Nogee, L.M. Alterations in SP-B and SP-C Expression in Neonatal Lung Disease. Annu. Rev. Physiol. 2004, 66, 601–623. [Google Scholar] [CrossRef]
- Griese, M.; Irnstetter, A.; Hengst, M.; Burmester, H.; Nagel, F.; Ripper, J.; Feilcke, M.; Pawlita, I.; Gothe, F.; Kappler, M.; et al. Categorizing Diffuse Parenchymal Lung Disease in Children. Orphanet J. Rare Dis. 2015, 10, 122. [Google Scholar] [CrossRef]
- Tang, X.; Zhao, S.; Shen, Y.; Tang, Y.; Yao, X.; Xu, H.; Liu, H.; Zhang, X.; Li, X.; Wang, Y.; et al. A Comparative Analysis of Clinical Phenotypes and Outcomes in Childhood Interstitial Lung Disease Due to Surfactant Dysfunction Disorders: Focusing on Mutations in SFTPC, ABCA3, and NKX2-1 Genes. Ital. J. Pediatr. 2025, 51, 265. [Google Scholar] [CrossRef]
- Fleury, M.; Delestrain, C.; Roditis, L.; Perisson, C.; Renoux, M.-C.; Thumerelle, C.; Epaud, R.; Fletcher, C.; Jedidi, N.; Coulomb L’Hermine, A.; et al. Surfactant Protein B Deficiency: The RespiRare Cohort. Thorax 2025, 80, 109–112. [Google Scholar] [CrossRef]
- Carlens, J.; Johnson, K.T.; Bush, A.; Renz, D.; Hehr, U.; Laenger, F.; Hogg, C.; Wetzke, M.; Schwerk, N.; Rayment, J.H. Heterogenous Disease Course and Long-Term Outcome of Children’s Interstitial Lung Disease Related to Filamin A Gene Variants. Ann. Am. Thorac. Soc. 2022, 19, 2021–2030. [Google Scholar] [CrossRef]
- Wobma, H.; Perkins, R.; Bartnikas, L.; Dedeoğlu, F.; Chou, J.; Vleugels, R.A.; Lo, M.S.; Janssen, E.; Henderson, L.A.; Whangbo, J.; et al. Genetic Diagnosis of Immune Dysregulation Can Lead to Targeted Therapy for Interstitial Lung Disease: A Case Series and Single Center Approach. Pediatr. Pulmonol. 2022, 57, 1577–1587. [Google Scholar] [CrossRef]
- Chen, K.; Han, Y.; Wang, Y.; Zhou, D.; Wu, F.; Cai, W.; Zheng, S.; Xiao, Q.; Zhang, H.; Li, W. scMoresDB: A Comprehensive Database of Single-Cell Multi-Omics Data for Human Respiratory System. iScience 2024, 27, 109567. [Google Scholar] [CrossRef]
- Cooney, A.L.; Wambach, J.A.; Sinn, P.L.; McCray, P.B. Gene Therapy Potential for Genetic Disorders of Surfactant Dysfunction. Front. Genome Ed. 2021, 3, 785829. [Google Scholar] [CrossRef] [PubMed]
| Isolated chILDs | Functional Impact | Gene | Inheritance | Onset | Related Phenotype | ILD Key Features |
|
Surfactant-related disorders |
SFTPC | AD | Neonatal/infancy | Surfactant metabolism dysfunction, pulmonary, 2 | Ground-glass pattern, Alveolar proteinosis |
|
| SFTPB | AR | Neonatal | Surfactant metabolism dysfunction, pulmonary, 1 | Ground-glass pattern, Alveolar proteinosis, Minimal exogenous surfactant response |
||
| ABCA3 | AR | Neonatal | Surfactant Metabolism Dysfunction, Pulmonary, 3 | Ground-glass pattern, Progressive fibrosis Lamellar body deposition, |
||
| SFTPA1/SFTPA2 | AD | Adult/rare pediatric | Interstitial Lung Disease 1, 2 | Pulmonary fibrosis, Early lung cancer risk |
||
| GM-CSF receptor-related disorders | CSF2RA | PAR | Childhood | Surfactant metabolism dysfunction, pulmonary, 4 | Ground-glass pattern, Defective alveolar macrophage maturation |
|
| CSF2RB | AR | Adult/rare pediatric | Surfactant metabolism dysfunction, pulmonary, 5 | Ground-glass pattern, Defective alveolar macrophage maturation |
||
|
Lysosomal-related disorders |
LAMP3 | AR | Childhood | – | Ground-glass pattern, Pulmonary fibrosis, Alveolar cell hyperplasia |
|
| Syndromic chILDs | Telomere maintenance | TERT/TERC | AD | Childhood-adult | Pulmonary fibrosis and/or bone marrow failure syndrome, telomere-related 1, 2 | Pulmonary fibrosis |
| NOP10/TINF2 | AR/AD | Adolescence/ childhood-adult | Dyskeratosis congenita, autosomal recessive 1, autosomal dominant 3 | Pulmonary fibrosis | ||
| DKC1 | X-linked | Childhood-adolescence | Dyskeratosis congenita, X-linked | Pulmonary fibrosis | ||
|
Immune disordes/ interferonopathies |
STING1 | AD | Childhood | STING-associated vasculopathy with onset in infancy | Ground-glass pattern, Pulmonary fibrosis, Alveolar macrophage infiltration |
|
| COPA | AD | Adolescence-young adult | Autoinflammation and autoimmunity, systemic, with immune dysregulation 1 | Ground-glass pattern, Lung cysts, Alveolar hemorrhage |
||
| STAT5B | AR | Childhood | Growth hormone insensitivity with immune dysregulation 1 | Pulmonary fibrosis | ||
| OAS1 | AD | Neonatal | Immunodeficiency 100 with pulmonary alveolar proteinosis and hypogammaglobulinemia | Lung consolidations, Alveolar proteinosis |
||
| CCR2 | AR | Childhood | Polycystic lung disease | Lung cysts, Alveolar proteinosis, Mild interstitial fibrosis |
||
| Cytoskeletal / structural disorganization | ITGA3 | AR | Neonatal | Epidermolysis Bullosa Junctional 7 with interstitial lung disease and nephrotic syndrome | Interstitiophaty | |
|
Pulmonary development / transcriptional dysregulation |
NKX2-1 | AD | Neonatal | Choreoathetosis, hypothyroidism, and neonatal respiratory distress | Interstitiophaty, Pulmonary fibrosis |
|
| TBX4 | AD | Childhood | Ischiocoxopodopatellar syndrome, with or without pulmonary arterial hypertension | Acinar dysplasia | ||
|
Aminoacyl-tRNA synthetase disorders |
FARSA/FARSB | AR | Childhood | Rajab interstitial lung disease with brain calcifications 1, 2 | Pulmonary Fibrosis, Alveolar proteinosis |
|
| MARS1 | AR | Childhood | Interstitial lung and liver disease | Pulmonary Fibrosis, Alveolar proteinosis |
||
| YARS1 | AR | Childhood | Infantile-onset multisystem neurologic, endocrine, and pancreatic disease 2 | Lung cysts, Pulmonary Fibrosis |
||
| Multisystem fibrosing syndromes | NHLRC2 | AR | Childhood | FINCA syndrome | Pulmonary Fibrosis | |
| FAM111B | AD | Childhood | Poikiloderma, hereditary fibrosing, with tendon contractures, myopathy, and pulmonary fibrosis | Pulmonary Fibrosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
